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Abstract In this paper, a Bayesian-based indicator-

weighting approach is developed to reduce the uncertainty

resulting from bias-correcting projection outputs from

multiple general circulations models (GCMs). The

approach decides whether or not a projection from a given

GCM output should be used depending on how close out-

put from the GCM’s retrospective run was to past obser-

vation (bias criterion) and agrees with the consensus

(convergence criterion) estimate of all future GCM pro-

jections in a ‘‘truth-centered’’ statistical framework. Indi-

cator weights are derived by equating present day versus

future changes in mean precipitation of individual GCM

output to the one obtained from the posterior distribution of

all GCMs using a Markov Chain Monte Carlo algorithm.

Use of GCMs outputs in hydrological impact studies

requires downscaling and/or bias correction steps in order

to account for discrepancies between small and large scale

land-atmospheric processes. One of the most popular

techniques for bias-correcting retrospective GCM outputs

is the cumulative distribution functions matching approach

based on observed precipitation. Future GCM projections

are then adjusted depending on the bias correction results

of retrospective outputs. In this sense, the bias correction

process introduces variability/uncertainty into GCM out-

puts resulting in a wide range of projected values. If more

than one GCM is used, the range of variability/uncertainty

further increases. The approach that is used to reduce this

uncertainty is demonstrated using 23 GCM outputs of

CMIP5 model runs for west central Florida.

Keywords Bayesian model weighting �GCM projections �
Uncertainty

Introduction

It is well established that coarse-resolution general circu-

lation models (GCMs) outputs impede their use directly in

hydrological impact studies at local or regional watershed

scale (Wood et al. 2002; Li et al. 2010). Downscaling

addresses the spatial scale mismatch between large scale

processes represented in GCMs (scale of hundreds of

kilometers) and regional scale processes (order of a tens of

kilometers). Bias correction methods attempt to inject local

scale variability into otherwise much smoother outputs of

the parent GCMs. The use of regional climate models

(RCM) is one approach used to downscale GCM output to

finer resolution scales. But recent studies have shown that

even RCM outputs need bias corrections for use in regional

hydrological modeling (Sharma et al. 2011; Hwang et al.

2012). These bias correction steps introduce uncertainty/

variability into the raw GCM or RCM outputs. Reducing

uncertainties in bias-corrected GCM or RCM has not got-

ten attention yet. This paper looks at uncertainties intro-

duced while bias-correcting GCM outputs and propose a

methodology in reducing them.

For hydrological impact studies, bias correction methods

of future precipitation projections may be categorized into

two groups depending on how those future projections are

derived: (1) ‘‘delta method’’—using precipitation changes

from one or more GCM projections versus retrospective

GCM runs and applying this difference to historical records
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to obtain future precipitation values. In this case, GCM-

projected precipitation values are not used directly; rather

the changes are applied to the historical records. There are

different flavor in this: One can use mean precipitation,

precipitation at a given percentage or range, and it may be

further applied at a seasonal or aggregated time scales (see

Anandhi et al. 2011 for more detail). (2) Match the entire

cumulative distribution functions (CDFs) of a GCM pro-

jection to observed values. There are two ways in this

approach. The first method derives the future precipitation

values by first projecting them on retrospective GCM CDFs

to obtain the exceedance probabilities and then selecting

the corresponding precipitation values from historical data

(Wood et al. 2004; Maurer and Hidalgo 2008). In this case,

future GCM precipitation distributions are not directly

used. The second method modifies future GCM projections

depending on the mismatch between observed and retro-

spective GCM CDFs (Li et al. 2010).

Data

Outputs from the Coupled Model Intercomparison Project

Phase 5 (CMIP5) model runs for 23 GCMs were obtained

using Koninklijk Nederlands Meteorologisch Instituut

(KNMI) Climate Explorer tool (http://climexp.knmi.nl/) for

RCP2.6 emission and concentration pathways (van Vuuren

et al. 2011). The data represent a mitigation scenario

aiming to limit the increase in global mean temperature to

2 �C. These scenarios are from the lower end of the sce-

nario literature in terms of emissions and radiative forcing

often showing negative emissions from energy use in the

second half of the twenty-first century. The South East US

bounded by 25 N:35 N and 90 W:75 W, 24 pixels in total,

was used to extract the data for the case study. Average

monthly data of the two long-term NOAA rainfall stations

(St Leo and Plant City) with over 110 years of historical

data at GCM cell centered at 81.25 W and 28.75 N and

corresponding GCM outputs for the cell were used to

demonstrate the technique reported here (Fig. 1).

Methods

Bias correction for Retrospective Runs

The well-established CDF matching approach for bias

correction of retrospective GCM outputs (past and present

period, usually this is termed as training or calibration

period) was used in this study (Panofsky and Brier 1968;

Wood et al. 2002; Maurer and Hidalgo 2008). For a pre-

cipitation variable x, the adjustment may be summarized as

(Li et al. 2010)

xm�r:adjst ¼ F�1
o�cðFm�cðxm�rÞÞ ð1Þ

where F is the CDF of either the observations (o) or model

(m) for historical training or current period (c), retrospec-

tive runs (r), or for future projection period (p). In this

method, for a given rainfall amount xm-r, one first finds the

percentile value of Fm-c(xm-r) using model CDF and then

calculate the adjusted rainfall amount using the observed

CDF, F�1
o�c. Once this step is finished the bias-corrected

GCM CDF will match exactly that of the observed.

Figures 2 and 3 show the error distribution found while

matching the CDFs using this approach for each season of

the year. The light gray color represents the range of pro-

jected precipitation (in this case representing the 1 and

99 % values) from the 23 GCMs, while the dark gray

represents the 25–75 % range. It is clear from both of these

plots that wet season rainfall (June through September) are

under predicted, while dry season rainfall (October through

May) are over predicted for the twentieth century simula-

tions. In addition, uncertainty in dry season rainfall (rep-

resented by error band) is higher in dry/winter season than

wet/summer season. Some of this can be explained by the

high coefficient of variation in dry season rainfall. These

results are based on 110 years of observed data. In addi-

tion, three 30-year periods (1901–1930, 1931–1960, and

1961–1990) (figures not shown) are analyzed with similar

results; except uncertainty in winter rainfall, specifically

October through December is much wider. Supplemental

Figure 2 and Figure 3 show plots of rainfall versus error

rather than exceedance probabilities.

Bias-correcting future projections

Equation (1) can also be used for correcting future GCM

outputs (Wood et al. 2002; Maurer and Hidalgo 2008) by

simply substituting xm-r, the retrospective output, with that
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Fig. 1 GCM grids and long-term rainfall station that are used for bias

corrections
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of the projection period, xm-p, and repeating the CDF

matching process. But such an approach explicitly assumes

that the precipitation variability does not change in the

future and that assumption may not hold (Milly et al.

2008). A modification to this technique is the one proposed

by Li et al. (2010) that is used in this paper. This method

accounts for the difference between future and present

CDFs. Mathematically, it can be written as:

xm�p:adjst ¼ xm�p þ F�1
o�cðFm�pðxm�pÞÞ

� F�1
m�cðFm�pðxm�pÞÞ ð2Þ

In short, for a p % future precipitation projection, xm-p, the

adjustment (error) obtained from CDF matching between

observation and GCM retrospective model run for that

percentile (shown in Figs. 2, 3) is determined and used to

modify future projection. Figures 4 and 5 show CDF of

rainfall projection for the year 2011–2040. Consistent with

Figs. 2 and 3, again uncertainties in dry season (October

through May) rainfall are higher than those in wet season

rainfall (June through September). Focusing on the dry

season, small dry season rainfall, especially those with

cumulative probability of 20 % or less, have huge
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Fig. 2 CDF matching error of 23 RCP2.6 GCM model outputs (simulation minus observation)
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uncertainties. Winter rainfall in central Florida is highly

influenced by the prevailing ENSO phase. Current GCMs

are not accurately modeling ENSO phases, and this may

account in part for high uncertainties (Lin 2007).

Uncertainties in GCMs projections

The range of rainfall outputs from different GCM models for

the same geographical area is different, reflecting uncer-

tainties in those models. Some of the uncertainties stem from

(Knutti et al. 2010): (1) uncertainty in the process being

modeled, that is, the inability to understand the process in the

first place; (2) uncertainty in model parameters, and (3)

structural uncertainty as a result of the inability to describe a

known process accurately. Because of these, each GCM will

have a different level of uncertainty reproducing relevant

parameters (e.g., precipitation, temperature) for a given

region. It is widely recognized that using an ensemble of

models is more robust than output from a single GCM

(Knutti et al. 2010). While it is straight forward to assess the

accuracy of GCMs on retrospective runs (using past and

present observations), it is not possible to do so on future

projections, unless certain statistical assumptions are made.

There are two schools of thought for using GCM ensembles
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Fig. 3 Same as Fig. 2 but for

July–December
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(IPCC 2010): (1) Those that assume that an ensemble

member is sampled from a distribution centered on the truth.

In this approach, retrospective GCM runs are assumed to be

sampled from a distribution that is centered on observation

plus error, while future projections are centered on the mean

of GCM ensemble. (2) Those that assume each member of

the ensemble is exchangeable with other members and with

the natural system (current observations) such that the

observation themselves are one random sample from a dis-

tribution that encompasses all possible outcomes. Under the

first assumption, using more GCMs will result in uncertainty

converging toward zero, while in the latter case, the uncer-

tainty converges toward the distribution of all outcomes. The

challenges of combining GCM outputs from multiple models

are reviewed in Knutti et al. (2010).

Bayesian-based truth-centered indicator-weighting

approach

The method presented here was first proposed by Giorgi

and Mearns (2002) as a reliability ensemble average (REA)
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Fig. 4 Rainfall projections

(2011–2040) of 23 GCM
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technique that defines two criteria of bias and convergence

in evaluating multiple outputs of GCMs to produce an

ensemble estimate that is a weighted average of individual

GCMs. The method was formalized in a Bayesian frame-

work by Tebaldi et al. (2005) and extended by Smith et al.

(2009). In summary, for n GCMs, each model i simulates

present and past (Xi) and future (Yi) precipitations. Under

the truth-centered approach, the statistical model is

assumed to be:

Xi ¼ lþ gi; i ¼ 1; . . .n ð3Þ

Yi ¼ tþ bðXi � lÞ þ ni=
ffiffiffi

h
p

; i ¼ 1; . . .n ð4Þ

where l and t are true but uncertain climate means for

present and future precipitation; b is the correlation

between current and future precipitation simulation and

assumed to be constant across GCMs (it is possible to relax

this constraint but that would increase the number of

parameters to be estimated); h is the variance scaling

parameter between current and future simulations; and

gi�Nð0; k�1Þ and ni�Nð0; k�1Þ are Gaussian error terms.

All parameters are considered random variables with a

prior distribution that is usually defined as an informative

as possible. Using standard Bayesian updating technique,

the posterior mean t is expressed as weighted by the
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Fig. 5 Same as Fig. 4 but for

July–December (2011–2040) of

23 GCM
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inverse of the model-specific error variance of ki as

t ¼
P

ki½Yi � bðXi � lÞ�=
P

ki. An approximation to the

posterior probability distribution of ki is then given by

EðkijfX0;. . .Xn; Y1; . . .YngÞ �
aþ 1

bþ 1
2
½ðXi � ~lÞ2 þ hðYi � ~tÞ2�

ð5Þ

where a and b are parameters of the Gamma prior

distribution of ki, ~l and ~t are the posterior means of l
and t (Tebaldi et al. 2005). From Eq. 5, it can be seen that

the weighting factor ki is large if jXi � ~lj and jYi � ~tj are

small. These two quantities represent, respectively, the bias

and convergence criteria of Giorgi and Mearns (2002). To

reduce uncertainties in GCM predictions, an indicator

variable, IVj, is introduced to discriminate individual GCM

outputs that are outside of the consensus (estimated by all

GCMs) precipitation changes obtained as a posterior of the

Bayesian model. Specifically, it has the following forms:

IVj ¼
1; if

S

n

i¼1

j~Yi � ~Xij
T

Yi � Xi

0; otherwise

8

<

:

ð6Þ

where ~Yi and ~Xi are a posterior estimates of Yi and Xi. In

other words, if a prior prediction of precipitation changes

by a GCM is outside of the posterior precipitation changes

of all GCMs, zero weight is assigned to that prediction;

otherwise, it has a value of one. Note that this approach

assigns equal weight to all GCM outputs that behave

similar to the majority of the output and disregards
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projections that may be regarded as ‘‘outliers’’ (those out-

side of the consensus projections). The approach is

implemented using a Markov Chain Monte Carlo (MCMC)

algorithm of Smith et al. (2009) that relaxes some con-

straints and extends Tebaldi et al. (2005) by having hyper

parameter distribution of their own for parameters a and b

in Eq. (5). Figure 6 shows histograms for the posterior

mean rainfall change (%) for each season from 2011 to

2040. The open circles represent individual GCM mean

rainfall changes. Note that the Bayesian approach descri-

bed above used raw GCM output (i.e., not bias corrected).

The line connecting two asterisks represents the median-

projected rainfall change using the bias correction tech-

nique described in Sect. 3.2. In all cases, the posterior mean

rainfall change shows a narrower uncertainty range than

both the raw GCM and bias-corrected GCM outputs.
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Therefore, by design the Bayesian approach, through its

truth-centered statistical framework, ignores outputs from

GCMs that are non-conforming to the historical data as

well as the future consensus estimates. Comparing raw

GCMs changes in mean rainfall projections (i.e., delta

method) to the bias-corrected mean rainfall projections

show seasonal dependent results. During the dry season

(October through April), the bias correction seems to

introduce more uncertainty/variability compared to the raw

GCM outputs, whereas during the rainy season (June

through September), the variation in bias-corrected pre-

cipitation projections is smaller than the raw GCM outputs.

The month of May seems to be a transition period between

the two. Figure 7 shows GCM projections of mean rainfall

changes for the twenty-first century. The left panels depict

bias-corrected results using Eq. (2) for all GCMs and raw

GCM outputs (lines). The right panels have the bias-cor-

rected results with an indicator-weighting factor applied to

them. From the left panels, it is clear that bias-corrected

results have more uncertainty during the dry season than

the raw GCMs. Also the range of uncertainty is higher in

dry seasons than summer seasons. The indicator-weighting

approach significantly reduces these uncertainties as shown

in the right panels.

Discussions and conclusions

CMIP5 retrospective GCM ensemble outputs have shown

over estimation of dry season rainfall but under estimation

of summer rainfall for the twentieth century for the study

area considered here. Uncertainties in GCM outputs and

the challenges of reducing it through model weighting

schemes have been at the center of recent studies (IPCC

2010; Knutti et al. 2010). Assessing the performance of a

GCM on retrospective data is straight forward—it either

reproduces what has happened adequately or not. Assess-

ment of GCMs future simulation is not straight forward and

needs certain statistical assumptions. Here, the assumption

is if there is sufficiently large number of GCMs, their

results will converge to ‘‘reality.’’ The truth-centered sta-

tistical framework of the Bayesian approach presented here

has been applied previously to raw GCM outputs (e.g.,

Tebaldi et al. 2005) and dynamically downscaled RCM

outputs (Manning et al. 2009), but not to bias-corrected

outputs. Here, we show its applications to bias-corrected

GCM outputs. For precipitation changes, bias correction

introduces additional variability to future GCM projections

depending on the variability of historical records used for

bias correction. In our case, dry season rainfall (October

through May) with higher coefficient of variations in

recorded data have shown more variability than summer

rainfall and hence have a wider uncertainty bound in future

projections once bias is corrected. Dry season rainfall is

also highly influenced by ENSO, and the effects of ENSO

are not yet fully captured in the current generation of

GCMs. The bias correction techniques used in this study

accounts for future precipitation CDF changes; however,

the results may not be as useful because of wider bands of

uncertainty inherent in the approach. The uncertainty is

now a combination of both historical data variability and

GCM output uncertainties. Higher uncertainty levels result

in smaller value of information that can be used for plan-

ning and adaptation purposes. Consequently, there is a

need to reduce these uncertainties in some formalized

manner than simply throwing out GCM output that may

appear to be ‘‘outliers.’’ In order to reduce this uncertainty,

we introduced a Bayesian-based indicator-weighting

approach to keep model outputs based on their past per-

formance (bias criterion) as well as agreement with the

consensus for future projections. It is possible that the

majority of models could go wrong but the assumption here

is that they will get it right. The weights for selecting a

given GCM’s output were derived by comparing individual

GCM projection changes with the consensus estimate

posterior change (results of all GCMs and over the distri-

bution of the change). This is the key difference between

the current approach and previously reported ones (Tebaldi

et al. 2005; Smith et al. 2009, and Manning et al. 2009). It

is important to note that the current approach is limited to

reducing the uncertainty of bias-corrected GCMs projec-

tions of mean precipitation changes. Application of the

method for time series simulation, a requirement of

hydrological models, is the next step.
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