

FOOD & RESOURCE ECONOMICS DEPARTMENT

Thresholds of the Florida Urban Water System in a Future World: *Economics Research Component*

> Tatiana Borisova Associate Professor Water Economics

2010 Workshop: What we "NEED" to help Water Utilities plan for water supply in the face of climate impact uncertainties and risk

- Projections of demand based on demographics, socioeconomics temperature, rainfall projections
- Policies/regulations that are suited & unique to each region

UF Water Institute UNIVERSITY of FLORIDA

"Public Water Supply Utilities Climate Impacts Working Group"

WORKSHOP REPORT

WORKSHOP ONE

Wednesday, September 22, 2010

9:30 – 4pm

Hosted by Orlando Utilities Commission in Orlando, Florida

FUTURE world: Changes in

i. Sea level rise rates,
i. Wet season length decrease Temperature mean / variances iii. Extreme Events
iv. Aquifer level reductions

Natural System (Surface and ground water hydrology) i) Aquifer levels / stream flows ii) Water quality iii) Seasonality iv) Variance of weather and climate (droughts, flooding, etc.) v) Sea level rise

Human System (Water supply and demand system)

- i) Landuse Changes (Coastal/Inland)
 - ii) Water demand
 - iii) Policies: water withdrawal and allocation
 - iv) Water suppliers: cost-recovery, conservation, and investments

Water quality / runoff Water withdrawal rates Meteorology

FOOD & RESOURCE ECONOMICS DEPARTMENT

Property-Level Water Demand

Direct Drivers	Indirect drivers
Climate / seasonal variability	Person characteristics (e.g., attitudes toward water conservation)
Incentives / disincentives (e.g., pricing, rebates)	Institutional trust(i.e., trust in water provider)
Regulations and ordinances (e.g., watering restrictions, planning regulations)	Interpersonal trust (i.e., trust in other consumers)
Property characteristics (e.g., lot size, house age, in-ground irrigation)	Fairness (e.g., in decision-making process)
Household characteristics (e.g., household size, demographics)	Environmental values /conservation attitudes
Person characteristics (e.g., knowledge how to conserve water)	Socio-economic factors (e.g., income, age, gender, education, etc.)

Based on: B. Jorgensen et al. / Journal of Environmental Management 91 (2009) 227–236

Example: Econometric models of household water consumption in Santa Barbara and Goleta, CA

FOOD & RESOURCE

ECONOMICS

DEPARTMENT

UNIVERSITY of FLORIDA

Jorgensen et al. / Journal of Env. Man-t 91 (2009) 227–236; Renwick and Archibald / Land Economics 74 (1998), 343–360.

Example: Econometric models of household water consumption in Santa Barbara and Goleta, CA

FOOD & RESOURCE

ECONOMICS

DEPARTMENT

UNIVERSITY of FLORIDA

Jorgensen et al. / Journal of Env. Man-t 91 (2009) 227–236; Renwick and Archibald / Land Economics 74 (1998), 343–360.

Water demand response to price changes

- 100 studies published in 2002 2012, 638 price elasticity estimates
- 10% ↑ price => 3.7% ↓ water use (median; range: 0.0% - 30.5%)
- Utilities can <u>increase</u> revenues by <u>increasing</u> the price
- Price change: achieving water conservation and cost-recovery objectives

Sebri, M. (2014) A meta-analysis of residential water demand studies, *Environment, Development, and Sustainability*, 16, 499–520.

Research Questions

- Demand forecast methods used by different Florida utilities
 - Comparison; Opportunity to refine?
 - Residential, commercial, industrial
- Improving demand forecasting models
 - Responses to significant price increase?
 - High-resolution modeling
 - Indoor vs outdoor demand
 - Hourly / daily demand (smart meters)
 - Additional data on households and property characteristics
 - socio-demographics, landscape attributes, attitudes toward water use, etc.
- Effects of price and non-price water conservation strategies on water use and utilities revenues
- Value of water in residential use
 (compared to agricultural and in-stream uses?)

MONTHLY WATER CHARGES AT 8,000 GALLONS

Raftelis Financial Consaltunts Inc., 2014 Florida Water and Wastewater Rate Survey

FOOD & RESOURCE

DEPARTMENT

FUTURE world: Changes in

i. Sea level rise rates,
i. Wet season length decrease Temperature mean / variances iii. Extreme Events
iv. Aquifer level reductions

Natural System (Surface and ground water hydrology) i) Aquifer levels / stream flows ii) Water quality iii) Seasonality iv) Variance of weather and climate (droughts, flooding, etc.) v) Sea level rise

Human System (Water supply and demand system)

- i) Landuse Changes (Coastal/Inland)
 - ii) Water demand
 - iii) Policies: water withdrawal and allocation
 - iv) Water suppliers: cost-recovery, conservation, and investments

Water quality / runoff Water withdrawal rates Meteorology

FOOD & RESOURCE ECONOMICS DEPARTMENT

Policies: Water Withdrawal and Allocation

- What is the value of water in alternative uses?
 - Public supply
 - Agricultural use (water demand, value, and costs of water use reduction)
 - In-stream use (ecosystem service provision)
- Innovative policies
 - Water farming: paying for increasing groundwater recharge
 - Paying others to offset increases in water use
 - Fee for water withdrawal
- Optimal level of groundwater withdrawal

- Withdrawing water today versus leaving it for tomorrow

Water suppliers: cost-recovery, conservation, and investments in alternative supply sources

- Balancing cost-recovery and water conservation objectives

 Pricing to encourage conservation and delay
 - investments in more expensive sources

http://www.dailygloom.com/cartoons/optimist_pessimist_accountant/

FUTURE world: Changes in

i. Sea level rise rates,
i. Wet season length decrease Temperature mean / variances iii. Extreme Events
iv. Aquifer level reductions

Natural System (Surface and ground water hydrology) i) Aquifer levels / stream flows ii) Water quality iii) Seasonality iv) Variance of weather and climate (droughts, flooding, etc.) v) Sea level rise

Human System (Water supply and demand system)

i) Water demand
 ii) Landuse Changes (Coastal/Inland)
 iii) Policies: water withdrawal and allocation
 iv) Water suppliers: cost-recovery, conservation, and investments

Water quality / runoff Water withdrawal rates Meteorology

FOOD & RESOURCE ECONOMICS DEPARTMENT

Connect. Explore. Engage. Food and Resource Economic Department (FRED)

Tatiana Borisova, PhD, Associate Professor, Water Economics, tborisova@ufl.edu 352-294-7666

Example: Water demand and household size

- Studies published in 2002 2012
- 23 studies, yielding 70 estimates of sensitivity (elasticity) of water demand to household size
- For a family of 4, increase in household size by 1 person will result in
 - 0.3% 35.3% increase in water use
 - mean of 8.9% increase

Sebri, M. (2014) A meta-analysis of residential water demand studies, *Environment, Development, and Sustainability*, 16, 499–520.

