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ABSTRACT: This study applied three statistical downscaling methods: (1) bias correction and spatial disaggre-
gation at daily time scale (BCSD_daily); (2) a modified version of BCSD which reverses the order of spatial dis-
aggregation and bias correction (SDBC), and (3) the bias correction and stochastic analog method (BCSA) to
downscale general circulation model daily precipitation outputs to the subbasin scale for west-central Florida.
Each downscaled climate input dataset was then used in an integrated hydrologic model to examine differences
in ability to simulate retrospective streamflow characteristics. Results showed the BCSD_daily method consis-
tently underestimated mean streamflow because the highly spatially correlated small precipitation events pro-
duced by this method resulted in overestimation of evapotranspiration. Highly spatially correlated large
precipitation events produced by the SDBC method resulted in overestimation of the standard deviation of wet
season daily streamflow and the magnitude/frequency of high streamflow events. BCSA showed better perfor-
mance than the other methods in reproducing spatiotemporal statistics of daily precipitation and streamflow.
This study demonstrated differences in statistical downscaling techniques propagate into significant differences
in streamflow predictions, and underscores the need to carefully select a downscaling method that reproduces
precipitation characteristics important for the hydrologic system under consideration.

(KEY TERMS: statistical downscaling; general circulation model (GCM); bias correction; spatiotemporal vari-
ability in daily precipitation; hydrologic implications; integrated hydrologic model (IHM).)
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INTRODUCTION

General circulation models (GCMs) are effective
tools for understanding present and past climate
(Fowler et al., 2007), and have been continually
improved as understanding of the global system has
advanced (Karl and Trenberth, 2003). However, the
current generation of GCMs is not suitable for provid-
ing long-term simulation of atmospheric processes for

precipitation and temperature at regional spatial
scales because of intensive computational costs. It
has been well documented that the resolution of the
current generation of GCMs (>100 km) is not suitable
for direct application to hydrologic and agricultural
impact assessments (e.g., Christensen and Christen-
sen, 2003; Wood et al., 2004). The effective assess-
ment of water resource impacts and adaptation
strategies to climate change requires point scale
(gauge based) or subbasin-based climate data to run
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hydrologic models (Enke and Spekat, 1997; Andr�eas-
son et al., 2004; Graham et al., 2007; Leander et al.,
2008). This incongruity between the spatial resolution
of GCMs and that needed by regional hydrologic mod-
els has been one of the major issues in developing
reliable assessments of climate change impacts on
water resources. This has led to a demand for
improved downscaling techniques for better regional
applications and evaluations (Feddersen and Ander-
sen, 2005; Ca~n�on et al., 2011).

There are two categories of GCM downscaling: sta-
tistical downscaling methods which use empirical rela-
tionships between features simulated by GCMs at grid
scales and surface observations at subgrid scales (Wil-
by and Wigley, 1997; Hay et al., 2002) and dynamical
downscaling techniques using regional climate models
(RCMs) based on physical links between the climate at
large and small scales (McGregor, 1997; Murphy,
1999). There have been numerous studies on the use of
downscaling and bias correction methods to correct cli-
mate model outputs to produce realistic simulations of
hydrological responses of the current climate (Mearns
et al., 1999; Zorita and von Storch, 1999; Widmann
et al., 2003; Diaz-Nieto and Wilby, 2005; Fowler et al.,
2007).

In general, dynamical downscaling has been shown
to produce reasonable climate regimes that reflect
temporal and spatial patterns of meteorological vari-
ables as RCMs provide physically coherent spatiotem-
poral variations in climate variables (Vasiliades et al.,
2009). However, the use of RCMs has significant com-
putational cost and thus their routine application for
the generation of ensembles of climate predictions
using multiple GCMs and multiple scenarios is lim-
ited. Furthermore, RCMs have their own bias in addi-
tion to the bias propagated from boundary conditions
and thus require bias correction prior to use for hydro-
logic, agricultural or natural resource impact assess-
ments (Sato et al., 2007; Hwang et al., 2011, 2013).

On the other hand statistical downscaling methods
can reduce the bias in climate data at high spatial
resolution without the intensive computer resources
required by dynamical downscaling (Iizumi et al.,
2011), and may thus be more amenable to climate
impact research where analysis of multiple realiza-
tions of multiple climate models is required. For this
reason, many studies have relied on statistical down-
scaling methods (e.g., Busuioc et al., 2001; Charles
et al., 2004; Diaz-Nieto and Wilby, 2005). Although
some statistical downscaling methods use various
large-scale atmospheric variables as predictors (i.e.,
explanatory variables) to estimate local climatic ele-
ments (Wilby et al., 1998; Wilby and Wigley, 2000),
other studies have been devoted to developing and
evaluating methods that directly use GCM daily pre-
cipitation as a predictor (e.g., Widmann et al., 2003;

Maurer and Hidalgo, 2008; Maurer et al., 2010).
However, simple statistical downscaling methods
often fail to adequately reproduce spatial and tempo-
ral variability which is considered an important
factor for predicting hydrologic response to climatic
forcing (Beven and Hornberger, 1982; Milly and
Eagleson, 1988). Accurately representing the spatio-
temporal variability in precipitation events is impor-
tant for accurately predicting regional hydrologic
behavior, especially for low-relief, precipitation-driven
subtropical regions affected by convective storms, as
in Florida. For example, spatially uniform lower
intensity rainfall typically produces higher evapo-
transpiration (ET) and more groundwater recharge
over the domain and thus less surface runoff than
more spatially distributed concentrated storms with
the same total volume.

Recently, Hwang and Graham (2013) developed a
stochastic technique, the bias correction and stochas-
tic analog method (BCSA) to downscale daily GCM
precipitation fields to reproduce the temporal statis-
tics and spatial autocorrelation structure of observed
daily precipitation fields. They applied the BCSA
technique to downscale daily precipitation projections
from four GCMs to a 12-km grid scale over the state
of Florida and evaluated their method compared to
an interpolation-based simple statistical downscaling
method (i.e., bias correction and spatial disaggrega-
tion method, BCSD) (Wood et al., 2002), a modified
version of BCSD which reverses the orders of the pro-
cedure (i.e., spatially downscaled followed by bias cor-
rection, SDBC) (Abatzoglou and Brown, 2012), and
the bias correction constructed analog method
(Hidalgo et al., 2008). They showed that the BCSA
exhibited superior skills in reproducing both the spa-
tial and temporal statistics of observed gridded daily
precipitation over other methods that tended to
underestimate spatial variability.

This study evaluates the relative ability of three
statistical downscaling methods: (1) the BCSD
method; (2) the SDBC method; and (3) the BCSA
method, to downscale daily GCM precipitation out-
puts to irregular subbasin (~3 to ~300 km2) resolution
and to simulate hydrologic response over the Tampa
Bay region (10,370 km2) in west-central Florida using
a physically based and spatially distributed hydro-
logic model. The downscaling methods were applied
to four GCM retrospective precipitation simulations
from 1961 to 2000. The skill of each method in repro-
ducing temporal and spatial statistics of subbasin
precipitation observations was evaluated using vari-
ous indices (e.g., spatial and temporal statistics, tran-
sition probabilities, spatial correlation indices, and
variograms). The retrospective temperature predic-
tions from each GCM were bias corrected using
a simple cumulative distribution function (CDF)-
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mapping method that assumes direct correspondence
between the GCM grid cell containing the tempera-
ture observation and the observation exceedence
probabilities. The use of a simpler bias correction pro-
cedure for temperature is warranted because spatial
variability in daily temperature is not as significant
as for daily precipitation in this region. The down-
scaled precipitation and temperature datasets were
used in an integrated surface-subsurface hydrologic
model (integrated hydrologic model [IHM]) (Geurink
and Basso, 2013) to evaluate their relative skills in
reproducing retrospective streamflow statistics over
the study area.

STUDY DOMAIN AND DATA

Tampa Bay Region: The Integrated Northern Tampa
Bay Model

Tampa Bay Water, the largest water supply agency
in west-central Florida, operates a diverse regional
water supply system and manages surface and ground-
water water sources in compliance with permitted
withdrawal limits to protect the ecological integrity of
rivers, wetlands, and lakes in the Tampa Bay region.
In this region, the fresh groundwater flow system gen-
erally consists of a thin surficial aquifer underlain by
the thick, highly productive carbonate rocks of the Flo-
ridan aquifer system. Most of the Floridan aquifer is
semiconfined, recharged from the overlying surficial
aquifer. However, in the northern extent of the region,
some portions of the Floridan aquifer are unconfined,
receiving direct recharge from vadose zone infiltration.
The significant temporally variable flux and storage
connection between surface water and groundwater
systems are caused by the near-surface water table
condition that covers more than 50% of the region.

To capture the dynamic interaction between sur-
face water and groundwater in this region, the IHM
was developed which integrates the EPA Hydrologic
Simulation Program-Fortran (Bicknell et al., 2001)
for surface water modeling with the U.S. Geological
Survey (USGS) MODFLOW96 (Harbaugh and
McDonald, 1996) for groundwater modeling. IHM
was designed to provide advanced simulation capabil-
ity of the complex interactions of surface water and
groundwater features in shallow water table environ-
ments. The model can be characterized as determinis-
tic, semidistributed parameter, semiimplicit real-time
formulation, with variable time steps and spatial dis-
cretization (Ross et al., 2004). The model components
explicitly account for all significant hydrologic pro-
cesses including precipitation, interception, ET, run-

off, recharge, streamflow, base flow, groundwater
flow, and all the component storages of surface,
vadose, and saturated zones (Ross et al., 2005). Cli-
mate input data requirements include time series for
precipitation and reference ET for each subbasin
(Geurink et al., 2006b).

To assist water supply planning and operations,
Tampa Bay Water developed and calibrated the Inte-
grated Northern Tampa Bay (INTB) model using the
IHM (Geurink et al., 2006a) simulation engine. The
10,370 km2 INTB model domain (Figure 1) is bor-
dered in the east by the Gulf of Mexico and in the
west by an inland groundwater divide (Geurink and
Basso, 2013). Tampa Bay is located in the southwest
part of the domain. The north and east boundaries
are modeled as steady-state no-flux boundaries that
follow the Floridan aquifer divide, the southeast
boundaries are modeled as general head boundaries
defined using observed well data around this region,
and the western offshore boundaries are modeled as
constant head boundaries (Geurink et al., 2006a;
Geurink and Basso, 2013). All boundaries are located
far from the area of interest for this study to mini-
mize their influence on findings of the study.

The surface water component of the model domain
is discretized into 172 subbasins (ranging in area
from 3.4 to 362.7 km2) based on surface drainage for
hydrologic modeling as shown in Figure 1. For each
subbasin, hydrologic processes are simulated within
hydrologic response units (land segments) based on
five upland land-use categories and two water-body
categories (Ross et al., 2004). Land cover over the
domain is diverse, including urban, grassland, forest,
agricultural, mined land, water, and wetlands. Open
water and wetlands cover about 25% of the region.

GCM Archive

In this study, outputs from four GCM retrospective
simulations: BCCR-BCM 2.0, CCSM, CGCM 3.1, and
GFDL-CM 2.0 (hereafter BCCR, CCSM, CGCM, and
GFDL, respectively) were obtained from the World
Climate Research Programme’s (WCRP’s) Coupled
Model Inter-comparison Project phase 3 (CMIP3)
multimodel dataset for 1961-2000 (Table 1). The grid
resolutions for the GCMs range from 1.4° to 2.8° and
thus the entire study area is covered by at most four
grids for each GCM. Figure 1 shows how each model
grid configuration covers the study domain.

Meteorological Data

The spatiotemporal distribution and intensity of
precipitation are important factors in deterministic,
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physically based hydrologic simulations. A high spa-
tiotemporal resolution is required to adequately cap-
ture the effects of localized convective storms, a
dominant type of precipitation event during the wet
season in Florida (Rokicki, 2002). The INTB model
requires 15-min precipitation time series for each of
the 172 subbasins.

Observed precipitation data over the INTB model
domain were obtained for 300 stations from three dif-
ferent sources including Tampa Bay Water, South-
west Florida Water Management District
(SWFWMD), and National Oceanic and Atmospheric
Administration (NOAA). Unfortunately 15-min pre-
cipitation data were only available at a few NOAA
precipitation gages. Therefore, to estimate the subba-
sin precipitation time series for input to the hydro-

logic model, all available precipitation data within
each basin were aggregated to a daily total then spa-
tially distributed using Thiessen polygons over the
172 subbasins (Figure 1). Within the INTB model the
daily precipitation values for each of the subbasins
were temporally disaggregated using 15-min observa-
tions from the nearest NOAA station that matched
the total rainfall of the day (i.e., a historical analog
approach: Geurink and Basso, 2013). The same tem-
poral disaggregation approach was applied to the
statistically downscaled daily precipitation results.

The INTB model used minimum and maximum
daily temperature data (Tmin and Tmax) from six
NOAA stations in the region to estimate reference ET
using Hargreaves equation (Hargreaves and Samani,
1985). Reference ET time series were estimated using

TABLE 1. GCMs Used in This Study.

Modeling Group, Country WCRP CMIP3 I.D. Acronym Grid Resolution Primary Reference

Bjerknes Centre for Climate Research, Norway BCCR-BCM2.0 BCCR 2.8° 9 2.8° Furevik et al. (2003)
U.S. Department of Commerce/NOAA/Geophysical
Fluid Dynamics Laboratory, United States

GFDL-CM2.0 GFDL 2.0° 9 2.5° Delworth et al. (2006)

Canadian Centre for Climate Modeling & Analysis, Canada CGCM3.1 CGCM 2.8° 9 2.8° Flato and Boer (2001)
National Center for Atmospheric Research, United States CCSM3 CCSM 1.4° 9 1.4° Collins et al. (2006)

Note: GCM, general circulation model; WCRP CMIP3, World Climate Research Programme’s Coupled Model Inter-comparison Project phase
3; NOAA, National Oceanic and Atmospheric Administration.

FIGURE 1. Map of Study Area, Subbasin Configuration (for Integrated Northern Tampa Bay [INTB]
model domain), Grid Configuration of General Circulation Models (GCMs), and Target Stations

for Streamflow Evaluation. See Table 1 for explanation of four GCMs.
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data from these six stations and then spatially
assigned to the 172 subbasins within the model
domain using a nearest-neighbor approach. Precipita-
tion and temperature data from 1989 to 2006 were
used for hydrologic model calibration and verification
(Geurink and Basso, 2013). These data were also used
in bias correction and downscaling of GCM results.

Hydrologic Data

Hydrologic observations from 1989 to 1998 and
from 1999 to 2006 were used for the INTB model cali-
bration and verification, respectively (Geurink and
Basso, 2013). Hydrologic observations included 38
streamflow monitoring stations and 200 locations
each of surficial and Floridan aquifer wells. Addi-
tional hydrologic data including pumping for irriga-
tion and public water supply and surface water
withdrawals for public water supply were collected
from USGS, the SWFWMD, and Tampa Bay Water
and used to develop the INTB model.

Four streamflow stations on the major rivers (Fig-
ure 1 and Table 2) were chosen to evaluate hydro-
logic response to the alternative downscaled climate
predictions, based on their importance to water sup-
ply management and variability in flow characteris-
tics over the study area. The river flows at these
stations are important for water supply operations
because they are either located near or downstream
of well fields or water is withdrawn from them to
meet local water demand. The Alafia and Hillsborough
rivers have a mean discharge of 8.6 and 6.2 m3/s,
respectively, with very few no-flow days, whereas
Cypress Creek and the Anclote River have a mean
discharge of less than 2 m3/s. Furthermore, Cypress
Creek has a large percentage (approximately 20%) of
no-flow days. Investigating stations with large and
small flow volumes is important to understand how
different types of flow regimes are affected by spatio-
temporal differences in downscaled climate data.

METHODOLOGY

The statistical downscaling methods examined in
this study are composed of two processes: bias correc-

tion and spatial disaggregation. While the technique
for bias correction is the same in each case, the spa-
tial disaggregation methods and order of the pro-
cesses are different among the methods. For the
BCSD and BCSA methods, bias correction is per-
formed at the GCM grid scale before spatial disaggre-
gation, requiring local observations to be aggregated
up to the GCM scale. For the SDBC method bias cor-
rection is performed after spatial disaggregation to
the subbasin scale, so subbasin observations are used
directly. In the following section, the common bias
correction technique is described. In the subsequent
sections, the particular data, disaggregation method,
and order of processes are detailed for each of the
three statistical downscaling methods. Figure 2 pro-
vides a schematic representation for each of the
methodologies.

Bias Correction of Climate Data

A CDF mapping approach (Panofsky and Brier,
1968; Wood et al., 2002; Ines and Hansen, 2006) was
used to bias correct the raw GCM outputs (for the
BCSD and BCSA methods) or downscaled raw GCM
outputs (for the SDBC method). CDF mapping is the
most common method for bias correction of climate
model outputs (Wood et al., 2004). The method effec-
tively removes the bias in the temporal statistics
(including mean, variance, skewness, kurtosis, etc.) of
precipitation and temperature predictions by adjust-
ing the simulated CDF to fit the observed CDF
(Hwang et al., 2011, 2013).

The procedure for bias correction used in this
study is described as follows: (1) CDFs of observed
daily precipitation data including the zero precipita-
tion days were created individually for each calendar
month at the appropriate spatial resolution for bias
correction, i.e., GCM grid cell (for BCSD and BCSA)
or subbasin (for SDBC). These 12 monthly CDFs were
used for bias correction of the daily outputs. (2) CDFs
of GCM simulated daily precipitation were created
for each calendar month at the appropriate spatial
resolution (GCM grid cell for BCSD and BCSA, sub-
basin for SDBC). (3) Daily outputs were bias cor-
rected at the appropriate resolution using CDF
mapping that preserves the probability of exceedence
of the simulated precipitation, but corrects the precipi-

TABLE 2. Target Stations for Streamflow Simulation.

Streamflow Stations Watershed Latitude Longitude Drainage Area (km2)

Alafia River at Lithia Alafia 27.8719 �82.2114 867.3
Hillsborough River near Zephyrhills Hillsborough 28.1497 �82.2325 569.6
Cypress Creek at Worthington Gardens Hillsborough 28.1856 �82.4008 302.9
Anclote River near Elfers Anclote 28.2139 �82.6667 187.7
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tation to the value that corresponds to the same
probability of exceedence from the observed CDFs.
Thus, bias-corrected rainfall x0t;i on day t at grid or
subbasin i was calculated as,

x0t;i ¼ F�1
obs;i Fsim;iðxt;iÞ

� � ð1Þ

where F(�) and F�1(�) denote a CDF of daily precipita-
tion x and its inverse, and subscripts “sim” and “obs”
indicate downscaled simulation and observed daily
rainfall, respectively. Because CDFs were developed
from all data including the zero precipitation days,
Equation (1) preserves the probability of rain events
as well as the temporal statistics (i.e., mean, vari-
ance, skewness, kurtosis, etc.) that the observed daily
data exhibit. However, it should be noted that
although the method removes biases for the particu-
lar time scale at which bias correction is conducted
(e.g., daily scale in this study), it does not guarantee
improvement in the timing of precipitation events or
the magnitude of precipitation events accumulated to
different time scales.

Statistical Downscaling Methods

BCSD_daily Method. The BCSD method is an
empirical statistical technique developed by Wood
et al. (2002) to downscale GCM products. Although
there is disagreement as to whether the simple inter-
polation method should be categorized as a statistical
downscaling method (Schmidli et al., 2006), the
BCSD method was classified as a statistical down-
scaling method for this study because it bridges the
coarse resolution GCM outputs and the fine resolu-
tion climate inputs required for impact assessment
models (Wood et al., 2004; Iizumi et al., 2011).
Whereas the BCSD method has conventionally been
used to downscale climate data at monthly scales
(Wood et al., 2004; Maurer et al., 2010), in this study
the method was extended to downscale daily GCM
results. We refer to this approach as “BCSD_daily”
hereafter in this article.

The BCSD_daily method consists of two separate
steps: bias correction followed by spatial downscaling.
Details of the procedure are depicted schematically in

    Method 3. BCSA to generate spa ally correlated precipita on field  Method 2. 
  SDBC

   Method 1. 
   BCSD_daily 

Evaluate against observa ons

 sub-basin dataset

Spa ally correlated field

Library of 
spa ally distributed daily 

precipita on fields 
at sub-basin scale  

Back 
transforma on

Normal score transforma on

Using correla on matrix 
of normal score

Daily GCM predic ons   

Method 3 resultsSDBC 
GCMs

Method 2 results

BCSA 
GCMs

BCSD 
GCMs

Method 1 results

Bias correc on
CDF mapping

at GCM grid scale

Spa al downscaling

 

Bias correc on
CDF mapping

at sub-basin scale

Spa al downscaling
IDW interpola on

onto sub-basin scale

Bias correc on
CDF mapping

at GCM grid scale

Es mate spa al correla on 
structure of obs.

172 sub-basin 
scale daily obs.

Generate (daily) 
random field over 

172 sta ons    

Select field from library

Gobs

Bobs

Bobs

Bobs

Gobs Gridded observa on 
(Maurer et al., 2002)

Bobs Sub-basin based observa on
(Geurink and Basso, 2013)

Calcula ng factors, i.e.,
Bias-corrected GCM/mean Gobs.

Interpola on of factors 

Rescaling at sub-basin scale 
  (i.e., factors×mean Bobs.)

Bobs

CDF: Cumula ve Distribu on Func on
IDW: Inverse Distance Weigh ng approach

FIGURE 2. Schematic Representation of the Methodology for Bias Correction and Spatial Disaggregation
at Daily Time Scale (BCSD_daily), Spatial Disaggregation and Bias Correction (SDBC), and Bias Correction and

Stochastic Analog Method (BCSA) Downscaling Techniques. In each case, the entire process is conducted
independently for each calendar month using daily general circulation model (GCM) and observed data.
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Figure 2 and enumerated as follows. (1) Gridded daily
precipitation observations from Maurer et al. (2002)
were aggregated up to the raw GCM scale and monthly
CDFs for the aggregated daily observed data were con-
structed for each GCM grid cell over Florida; (2)
monthly CDFs of GCM simulated daily precipitation
were created for each GCM grid cell; (3) daily GCM
simulations were bias corrected using the CDF map-
ping approach described above; (4) coarse-scale factors
(i.e., bias-corrected GCM precipitation/aggregated
observed mean daily precipitation for the appropriate
month) were spatially interpolated from the GCM grid
cells over the state of Florida to the subbasin centroids
using an inverse distance weighting (IDW) approach
(Shepard, 1984); (5) interpolated subbasin factors were
rescaled using the mean daily precipitation at the sub-
basin scale calculated using subbasin-based observa-
tions for the appropriate month.

Although gridded observations were used for initial
bias correction (because the interpolation process
included some GCM grid cells outside the model
domain where subbasin observations were not avail-
able), subbasin-based observations were used to
rescale the interpolated factors at the subbasin scale
(i.e., in step 5) to reproduce the mean precipitation of
subbasin observations used to calibrate the model.

SDBC Method. Recently, Abatzoglou and Brown
(2012) modified the BCSD method by changing the
order of the BCSD procedures to improve the BCSD
method results at the daily time scale. The SDBC
method applied in this study generally follows the
procedure developed by Abatzoglou and Brown
(2012), except the monthly CDFs were developed
using daily precipitation data for each calendar
month instead of using a 15-day moving window cen-
tered on each calendar day for CDF mapping. Details
of the procedure, as modified for this study, are enu-
merated as follows: (1) coarse-scale daily GCM precip-
itation outputs were interpolated to the subbasin
centroids using an IDW approach; (2) monthly CDFs
of observed daily precipitation were created for each
subbasin in the model domain; (3) monthly CDFs of
interpolated GCM daily precipitation were created for
each subbasin in the model domain; (4) daily GCM
simulations for each subbasin were bias corrected
using the CDF mapping approach described above.

BCSA Method. The BCSA method was developed
by Hwang and Graham (2013) to downscale daily
GCM results to produce fine-scale daily precipitation
outputs which preserve both the temporal statistical
characteristics as well as the spatial correlation
structure of observed precipitation fields. This
method can downscale daily GCM precipitation out-

puts to any spatial configuration or resolution (e.g.,
point, grid, or subbasin) where the temporal statistics
and spatial correlation among observations can be
estimated. The method uses the observed temporal
and spatial statistics among the spatially distributed
observations to generate synthetic precipitation fields
which honor the observed statistics.

The first step in the BCSA procedure is to generate
an ensemble of synthetic precipitation fields that
honor the observed spatiotemporal statistics. The pro-
cedure was conducted separately for each month
because the spatiotemporal statistics for daily rainfall
(e.g., temporal CDF, spatial correlation structure,
etc.) vary over the year. Details of the procedures are
as follows: (1) for each subbasin the observed daily
precipitation data for that month were transformed
into standard normal variables using a normal score
transformation approach (Goovaerts, 1997); (2) corre-
lation coefficients between the normal score trans-
form variables were estimated for all pairs of
subbasin daily precipitation data; (3) an ensemble of
synthetic spatially correlated random daily precipita-
tion totals, that preserve the estimated correlations
for that month, was generated over the subbasins
using the Cholesky decomposition method (Taussky
and Todd, 2006); (4) the synthetic normal score trans-
form fields were back-transformed to the original
observed distributions at each subbasin. An ensemble
of 3,000 realizations of precipitation for each month
was produced for this study.

Next, the daily raw GCM precipitation data
were bias corrected using the spatially aggregated
subbasin-based observation over each corresponding
GCM grid cell. Finally, for each day that the coarse-
scale bias-corrected GCM results predicted nonzero
rainfall a realization from the appropriate monthly
ensemble was selected for which the spatial mean of
the generated precipitation field most closely matched
the coarse-scale bias-corrected GCM result. Any dif-
ference between the spatial mean precipitation of the
best-fit-generated precipitation field and the coarse-
scale bias-corrected GCM precipitation (generally
<0.1 mm) was removed by multiplying the generated
field by a scaling factor (i.e., spatial mean of bias-
corrected GCM field/spatial mean of precipitation
field chosen from the ensemble). An ensemble size of
3,000 was chosen because it produced a detailed
enough set of realizations so that a realization with
an areal rainfall volume within 0.1 mm of the GCM
prediction could always be found. Inclusion of more
realizations within the ensemble did not significantly
improve the match. For days that the coarse-scale
bias-corrected GCM results predicted zero rainfall
over the domain, each subbasin was assigned zero
rainfall.
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Hydrologic Modeling

Geurink and Basso (2013) calibrated the IHM
model from 1989 to 1998 and verified its performance
from 1999 to 2006 (18-year total period) using the
observed data described above to produce the INTB
application. In this study the observed precipitation
and temperature data used in the calibrated INTB
model were replaced by the downscaled GCM daily
precipitation and temperature datasets developed in
this study. For each downscaled GCM, the INTB
model simulation was run using precipitation and
temperature for two consecutive 18-year periods
extracted from the 40-year retrospective period (i.e.,
the 36-year period from 1965 to 2000). All other
parameters, forcing terms, initial conditions, and
boundary conditions were identical to those used in
the calibrated INTB model to focus on differences cre-
ated by the downscaled temperature and precipita-
tion data.

RESULTS AND DISCUSSION

Statistically Downscaled GCM Results

Temperature. Figure 3 compares the mean daily
Tmin and Tmax from each of the raw GCMs (spatially
averaged over the study area using the area weight-
ing method) to the observed mean daily Tmin and
Tmax (averaged over the six stations) for each month
of the year. The observed mean daily Tmax ranged
from 22.0°C (in January) to 32.8°C (in August) and

the observed mean daily Tmin ranged from 10.4°C (in
January) to 23.1°C (in August). The spatial variabil-
ity in mean Tmin and Tmax observations over the six
stations is represented by error bars on the figure.
These plots indicate that the range of the observed
mean Tmax over the six stations was higher (i.e., 1.6-
2.2°C, �3% of the mean Tmax) during the winter and
spring than the summer (i.e., 0.9-1.5°C, �8% of the
mean Tmax). Observed mean Tmin was, in general,
more spatially variable than observed mean Tmax

(i.e., 3.5°C, �20% of mean Tmin) over the entire
annual cycle.

All of the raw GCMs showed errors in the magni-
tude of Tmin and Tmax (typically underestimating
both) as well as the pattern of the monthly cycle of
Tmax (e.g., GCM peaks occurring in March through
June instead of July and August) and the monthly
cycle of Tmin (GCM peaks occurring in May through
June for Tmin instead of July and August). After bias
correction, however, all the GCM results exactly fol-
low the magnitude and timing of the observed mean
temporal cycle for both Tmin and Tmax since the tem-
perature data are bias corrected on a daily basis
using observed monthly CDFs.

Precipitation. Figure 4 shows the temporal
mean and standard deviation of daily precipitation
for the observations and raw GCM predictions aver-
aged over the domain for each month of year. The
spatial variation in the observed mean daily precipi-
tation over the 172 subbasins is shown in Figure 4a
and the spatial variation in the observed standard
deviation of daily precipitation is shown in Figure 4b.
The range of the mean daily precipitation over the
172 subbasins varied from 0.7 mm in November (46%
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of spatially averaged observations) to 2.9 mm in June
(45% of spatially averaged observations) which is sig-
nificantly greater than the spatial variability that
was exhibited by the temperature data.

The raw GCM precipitation results indicate that
while BCCR, CGCM, and GFDL overestimated wet
season precipitation (June through August), these
raw GCM predictions generally reproduced the
observed seasonal pattern of highest rainfall during
the summer. On the other hand, the raw CCSM
results did not reproduce the observed seasonal pat-
tern of rainfall for the region, predicting highest rain-
fall in March and April which are among the driest
months, and lowest rainfall in August and September
which are typically among the wettest months. Fur-
thermore, all the GCM results tended to underesti-
mate the temporal standard deviation of daily
precipitation (Figure 4b) with average monthly error
between observed and GCM standard deviation of
daily precipitation ranging from �3.8 mm or �41%
(CGCM) to �4.5 mm or �48% (BCCR).

Bias correction using the CDF mapping approach
on a daily basis forces the reproduction of the tempo-
ral mean of daily precipitation observations, thus all
the downscaling methods used in this study match
the observed mean daily precipitation cycle over the
subbasins exactly (thus statistically downscaled
results for mean daily precipitation are not shown).
However, the skill in reproducing the standard devia-
tion of daily precipitation varies among the downscal-
ing methods. Figure 5 compares average temporal
standard deviation of the downscaled daily GCM pre-

cipitation to the average temporal standard deviation
of observed daily precipitation over the 172 subbasins
for each month. The figure shows that whereas SDBC

0

2

4

6

8

10

12

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

M
ea

n 
da

ily
 p

re
ci

pt
ia

tio
n 

(m
m

) 

Bobs
BCCR
CCSM
CGCM
GFDL

(a)

0

5

10

15

20

25

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

St
d.

 o
f d

ai
ly

 p
re

ci
pi

ta
tio

n 
(m

m
) 

Bobs
BCCR
CCSM
CGCM
GFDL

(b)

FIGURE 4. (a) Mean Daily Precipitation and (b) Standard Deviations (Std.) of Daily Precipitation for Basin-Based Observations (Bobs, 1988-
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and BCSA successfully reproduce the observed tem-
poral standard deviation of daily precipitation, the
BCSD_daily method underestimates the temporal
standard deviation of daily precipitation by 12-39%,
with more significant underestimation during the wet
season from June to September. This result is due to
the temporally smoothed time series created by the
interpolation of bias-corrected precipitation from the
coarse GCM resolution to the subbasin scale. Iizumi
et al. (2011) found similar results and concluded that
simple statistical downscaling methods may be inac-
curate for reproducing temporal variation patterns,
and less physically plausible because of oversimplifi-
cation of the underlying local-scale physical pro-
cesses. Note that individual GCMs are not separately
represented in Figure 5 because differences among
the four GCM results (i.e., standard deviation of daily
precipitation) for a given downscaling technique are
negligible (<0.1 mm, �1%).

Figure 6 compares temporal means and standard
deviations of the daily precipitation results using
the three downscaling methods over the entire data
period for each of the 172 subbasins individually.
The BCSD_daily method estimates the temporal

mean accurately for all subbasins, but underestimates
the temporal standard deviation of daily rainfall
by 8-32% for all subbasins. The SDBC method accu-
rately estimates both the mean and the standard
deviation of daily rainfall for all subbasins. The
BCSA method reproduces the mean and standard
deviation of daily precipitation patterns in general;
however, the errors for individual subbasins are larger
than for the SDBC method. The BCSA ensemble is
generated randomly from the observed CDF; thus,
differences between the mean generated from the
ensemble and from the data are due to sampling from
a limited number of replicates (3,000 in this study).
This could possibly be improved by increasing the
size of ensemble or improving the accuracy of the
random field generator in the BCSA process.

While the SDBC method most accurately repro-
duces temporal statistics of daily precipitation at each
station, the method overestimates the temporal stan-
dard deviation of spatially averaged daily precipita-
tion over the domain, as shown in Figure 7. This
figure indicates that the BCSD_daily and BCSA accu-
rately reproduced the standard deviation of average
precipitation over the study area. However, the
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JAWRA JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION10

HWANG AND GRAHAM



SDBC process resulted in significant overestimation
of the temporal standard deviation of spatially aver-
aged precipitation, even though it showed good skill
in reproducing temporal standard deviation of daily
precipitation for each basin individually (Figures 5
and 6). This is due to the fact that in the SDBC pro-
cedure the daily GCM precipitation predictions are
spatially disaggregated by interpolation and then bias
correction at the downscaled grid resolution. Thus,
the probability of exceedence of the daily precipita-
tion generated at the coarse GCM grid scale is repro-
duced at each local grid cell, exaggerating the spatial
extent of the effects of extreme events, particularly in
the summer wet season which is dominated by small-
scale convective thunderstorms.

In addition to the temporal mean and standard
deviation of daily precipitation, day-to-day precipita-
tion patterns are important for most hydrologic appli-
cations. For instance, the occurrence of consecutive
wet and dry days reflects dynamic properties of pre-
cipitation that have important implications for pro-
ducing extreme hydrologic behavior (i.e., flood and
drought events). Hence, daily transitions between
wet and dry states were calculated using the first-
order transition probability (Haan, 1977) for the
observed data, the raw and bias-corrected GCM data,
and the downscaled bias-corrected GCM data (Fig-
ure 8). These results indicate that the raw GCM out-
puts significantly overestimated the dry-to-wet (P01)
and wet-to-wet (P11) transition probabilities com-
pared to observations in both the wet and dry sea-

sons. Note that raw GCM results predict areally
averaged precipitation over a large area, and thus
may be expected to include more wet days than
observations at finer scales because a wet day occurs
if precipitation falls anywhere in the large grid cell.

The bias-corrected GCM scale results for the grid
nearest to the study area showed considerable
improvement in reproducing the fine scale observed
P01 in the dry season, but showed little improvement
in reproducing P11 in the dry season, P01 in the wet
season, or P11 in the wet season. Similar to the raw
and bias-corrected GCM results, the BCSD_daily
results significantly overestimated P01 and P11 tran-
sition probabilities because direct interpolation of
bias-corrected coarse-scale GCM results creates more
rainy days with small precipitation events at the sub-
basin scale than exhibited by the observations. In
contrast, transition probabilities produced using
SDBC and BCSA results matched observed transition
probabilities quite well for both seasons, with higher
transition probabilities (both P01 and P11) in the wet
season. Note that the observed spatial variation in
wet-to-wet transition probability over the 172 subba-
sins is larger than dry-to-wet transition probability
for both seasons and this observed spatial variance is
accurately reproduced by the BCSA method.

Spatial variability in daily precipitation was exam-
ined by calculating the number of rainy subbasins as
a function of spatially averaged precipitation for both
the wet and dry seasons (Figure 9). This figure indi-
cates that the number of subbasins predicted to be
rainy (defined as >0.1 mm for a subbasin) differs sig-
nificantly among the three downscaling methods. The
interpolation-based spatial downscaling methods (i.e.,
BCSD_daily and SDBC) tend to overestimate spatial
correlation, and thus simulate an excessive number
of rainy subbasins, except for the large precipitation
events (>10 mm). The BCSD_daily results showed the
most serious overprediction of the number of rainy
subbasins with more than 50% of study domain esti-
mated to be rainy in the wet season even for small
precipitation events (<0.1 mm, spatially averaged
precipitation). The SDBC method showed improve-
ment over the BCSD_daily method, but still simu-
lated too many rainy subbasins for both seasons. On
the other hand, the BCSA method successfully repro-
duced the number of rainy subbasins for both
seasons.

While the number of rainy basins with respect to
the magnitude of precipitation events is one indicator
of the spatial correlation of daily rainfall, the rela-
tionship between the geographical distance and corre-
lation are not conveyed by this measure. We used the
variogram, defined as the expected value of the
squared difference of the values of the random field
separated by certain distance (Goovaerts, 1997), to
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evaluate how well each downscaling technique repro-
duces the spatial correlation structure of the observed
daily precipitation. Variograms were estimated for
daily observations and the downscaled daily GCM
precipitation results for both the wet and dry sea-
sons. Figure 10 compares the estimated variograms
among the three downscaling methods to the
observed variogram. These figures indicate that the
BCSD_daily and SDBC results significantly underes-
timated the observed variogram at all separation dis-
tances, but that the BCSA reproduced the observed
variograms accurately for both wet (June through
September) and dry (October through May) seasons.
Note that differences among the variograms for indi-

vidual GCM results were not significant compared to
differences among the downscaling methods.

Hydrologic Simulation Results

The calibrated INTB model was run to simulate
streamflows using the statistically downscaled cli-
mate datasets. The monthly pattern of mean daily
streamflow is commonly used to evaluate hydrologic
implications of climate predictions (e.g., Wood et al.,
2004; Dibike and Coulibaly, 2005). Figure 11 com-
pares mean daily streamflow, by month, predicted
using the climate input data (i.e., precipitation and
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temperature) from the various downscaling methods
to INTB calibrated model results and observations for
the four target stations. Note that comparing the sim-
ulated results to the calibrated results evaluates dif-
ferences due only to variations in climatic forcing,
whereas comparing to observations reflects both
climatic forcing and hydrologic modeling errors.

Results indicate that for all downscaling tech-
niques the monthly pattern of mean daily streamflow
was similar to observed and calibrated results during
the dry season from October through May. However,
all methods tended to underestimate the streamflow
during the early portion of the wet season from June
through August. The BCSD_daily method underesti-

mated streamflow in the wet season more signifi-
cantly than the SDBC and BCSA methods at all
stations (Table 3). This is due to the highly spatially
correlated small precipitation events produced by the
BCSD_daily method (Figures 9 and 10) that result in
overestimation of ET over the domain. Figure 12
compares the total annual ET estimated over the
domain for each climate input and the calibrated
model. These results show that the BCSD_daily
results overestimated the total ET by 3.1-5.3% over
the model domain. Note that the temporal distribu-
tion of daily reference ET estimated using the differ-
ent downscaled climate inputs was identical for each
station because the temporal distributions of daily

0

40

80

120

160

0.01 0.1 1 10 100

N
um

be
r o

f  
su

b-
ba

si
ns

spatially averaged precipitation (mm)

Bobs
BCSD_daily GCMs
SDBC GCMs
BCSA GCMs

0

40

80

120

160

0.01 0.1 1 10 100

N
um

be
r o

f  
su

b-
ba

si
ns

spatially averaged precipitation (mm)

Bobs
BCSD_daily GCMs
SDBC GCMs
BCSA GCMs

(b) dry(a) wet

FIGURE 9. Comparison of Number of Rainy Subbasins as a Function of Spatially Averaged Precipitation for (a) Wet and
(b) Dry Season. Observation (Bobs) were compared to the results of three different downscaling methods.

0

20

40

60

80

100

120

0 20 40 60 80 100 120

Va
rio

gr
am

 (m
m

2 )

Separation distance (km)

Bobs
BCSD_daily_GCMs
SDBC_GCMs
BCSA_GCMs

0

20

40

60

80

100

120

0 20 40 60 80 100 120

Va
rio

gr
am

 (m
m

2 )

Separation distance (km)

Bobs
BCSD_daily_GCMs
SDBC_GCMs
BCSA_GCMs

(b) dry(a) wet

FIGURE 10. Comparison of Variograms of Subbasin-Based Observations (Bobs) and the Downscaled Predictions Using Bias Correction
and Spatial Disaggregation at Daily Time Scale (BCSD_daily), Spatial Disaggregation and Bias Correction (SDBC),

and Bias Correction and Stochastic Analog Method (BCSA) Techniques for (a) Wet and (b) Dry Season.

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION JAWRA13

ASSESSMENT OF ALTERNATIVE METHODS FOR STATISTICALLY DOWNSCALING DAILY GCM PRECIPITATION OUTPUTS TO SIMULATE REGIONAL STREAMFLOW



temperature at each station were exactly matched to
the observed distribution through the bias correction
process.

Figure 13 compares the standard deviation of daily
streamflow predicted using each of the methods to
the observed and calibrated results. This figure indi-
cates that the SDBC results significantly overesti-
mated the temporal standard deviation of daily
streamflow during the wet season from June to Sep-
tember, especially for the larger subbasins (Alafia
River and Hillsborough River, see also Table 3). This

is due to the fact that SDBC overpredicts the spatial
correlation of large precipitation events during the
wet season (see Figures 7, 9, 10) which leads to over-
prediction of high streamflow events, especially for
larger subbasins that integrate rainfall over larger
areas.

The averaged mean differences (i.e., simulated-cali-
brated) and errors (i.e., simulated-observed) of the
temporal mean and standard deviation of daily
streamflow simulation over the four GCMs for the
wet and dry seasons are compared in Table 3. The
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results confirm that the SDBC and BCSA methods
predict mean streamflow with better accuracy than
the BCSD_daily method. For example, for the SDBC
and BCSA results averaged errors over the stations
were approximately �0.4 m3/s (~13% of observed
mean streamflow) and �0.7 m3/s (~17% of observed
mean streamflow), respectively, for the wet season.
However, the averaged error of the BCSD_daily
results was �2.2 m3/s (~39% of observed mean
streamflow) for the wet season. The statistics in the
table also confirm that the BCSD_daily method
underestimates the temporal standard deviation of
daily streamflow throughout the year for all stations,
whereas the SDBC method overestimates the tempo-
ral standard deviation of daily streamflow in the wet
season for the large stations. The BCSA method pro-
duces the lowest average error in temporal standard
deviation in the wet season and comparable errors to
the SDBC method in the dry season.

The statistical significance of the differences
between the observed and simulated mean monthly
streamflows over the study period was examined by
month and by target station using the two-sample
t-test. The cases for which the calibrated model and
downscaled GCMs predicted mean monthly stream-
flows that were not statistically significantly different
from observed mean monthly streamflows at signifi-
cance level p = 0.05 are shown in Table 4. The mean
monthly streamflows predicted by the calibrated
model were found to be statistically equal to the
observed mean monthly streamflows for 33 of a total
of 48 possible cases (i.e., 4 stations 9 12 months).
The results for the downscaled GCM simulations var-
ied by month and station, however, the BCSD_daily
results showed the fewest cases from which mean
monthly streamflows was found to be statistically
equal to observed mean monthly streamflow at the
0.05 significance level, i.e., 19% of the 192 total cases

TABLE 3. Average Mean Error (simulated-observed) and Average Mean Differences (simulated-calibrated) of the Temporal Mean and Stan-
dard Deviation of Daily Streamflow for Wet and Dry Season over the Four General Circulation Models.

Average Mean Error (simulated-observed)

Unit: m3/s Temporal Mean of Daily Streamflow
Temporal Standard Deviation of Daily

Streamflow

Downscaling Methods Calibrated BCSD_daily SDBC BCSA Calibrated BCSD_daily SDBC BCSA

Wet season Alafia �0.038 �4.633 �1.550 �2.264 3.534 �3.431 7.622 1.312
Hillsborough 2.003 �2.199 0.504 �0.075 0.176 �2.352 3.880 �1.209
Cypress Creek 0.345 �0.836 �0.101 �0.168 �0.773 �1.914 �0.577 �1.380
Anclote �0.100 �0.943 �0.268 �0.480 �1.967 �2.636 �0.637 �1.631
Avg. error 0.553 �2.153 �0.354 �0.747 0.243 �2.572 2.583 �0.727

Dry season Alafia �0.037 �2.092 �1.280 �1.333 0.918 �1.609 0.225 �0.728
Hillsborough 0.912 �0.926 �0.194 �0.465 0.798 �2.715 �1.354 �3.235
Cypress Creek �0.071 �0.568 �0.289 �0.226 �0.749 �0.957 �0.480 �0.475
Anclote �0.118 �0.404 �0.175 �0.194 �0.704 �0.615 0.036 �0.095
Avg. error 0.172 �0.998 �0.485 �0.555 0.066 �1.474 �0.393 �1.133

Average Mean Differences (simulated-calibrated)

Unit: m3/s Temporal Mean of Daily Streamflow
Temporal Standard Deviation of Daily

Streamflow

Downscaling Methods BCSD_daily SDBC BCSA BCSD_daily SDBC BCSA

Wet season Alafia �4.595 �1.513 �2.226 �4.401 4.089 �2.222
Hillsborough �4.201 �1.499 �2.078 �2.528 3.703 �1.386
Cypress Creek �1.181 �0.445 �0.513 �1.141 0.196 �0.607
Anclote �0.843 �0.169 �0.381 �0.669 1.330 0.337
Avg. difference �2.705 �0.907 �1.300 �2.185 2.330 �0.970

Dry season Alafia �2.055 �1.243 �1.296 �2.143 �0.309 �1.262
Hillsborough �1.839 �1.106 �1.377 �3.602 �2.242 �3.123
Cypress Creek �0.496 �0.217 �0.155 �0.878 �0.402 �0.396
Anclote �0.286 �0.056 �0.076 �0.537 0.114 �0.017
Avg. difference �1.169 �0.656 �0.726 �1.790 �0.710 �1.200

Notes: Bold indicates the largest error or difference among the methods. Italic indicates the average error or difference over the streamflow
stations for each season.
BCSD_daily, bias correction and spatial disaggregation at daily time scale; SDBC, spatial disaggregation and bias correction; BCSA, bias
correction and stochastic analog method.
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(i.e., 12 months 9 4 stations 9 4 GCMs). In particu-
lar for the wet season, few BCSD_daily cases (e.g.,
only BCCR results for the Anclote River in June and
none of the GCMs for any of the rivers in July and
August) were found to have acceptable skill in repro-
ducing mean streamflow. The SDBC and BCSA meth-
ods showed improvement over the BCSD method,
with 34% of all cases for SDBC and 33% of all cases
for BCSA showing mean monthly predictions that
showed no statistical difference from the observed
results at the 0.05 significance level.

In addition to accurate predictions of the mean
and standard deviation of daily streamflow, accu-
rately predicting the magnitude and frequency of
extreme flow events is critical for water management.
Figure 14 compares the annual frequency of daily
streamflow events as a function of the daily stream-
flow. Results indicate that for streamflows up to the
95th percentile (indicated in the Figure 14 for each
station) the frequency of daily streamflow events was
accurately reproduced by all methods. However,
for all downscaling methods the magnitude of low-
frequency, extremely high daily streamflow tended to
exceed the magnitude of observed extreme daily
streamflow events. Of the three downscaling meth-
ods, the SDBC method overestimated the frequency
of high streamflow events most significantly. As dis-
cussed previously, the SDBC method overestimated
the temporal standard deviation of spatially averaged
precipitation and daily streamflow predictions (Fig-
ures 7 and 13) because the large-scale daily GCM
precipitation simulations are bias corrected at the
downscaled grid resolution at the last step in the pro-
cedure. Thus, on a daily basis the rainfall for each

downscaled subbasin preserves the precipitation per-
centile event predicted by the large-scale GCM, exag-
gerating the spatial extent of high percentile events.

To evaluate predictions of the duration of high
streamflow events, the 7Q10 and 7Q2 high stream-
flows were calculated for each downscaling method
and compared to the observed and calibrated results
(Figure 15). Note that the 7Q10 (7Q2) high flow is
the annual seven-day maximum streamflow that is
expected to occur on average in one of 10 (2) years.
7Q10 and 7Q2 low flows (i.e., seven-day minimum
streamflow) are also important indices in terms of
water quality and supply management. However,
7Q10 and 7Q2 low flow for the target stations are
quite small, i.e., less than 1 m3/s even for high
streamflow stations (i.e., Alafia River and Hillsbo-
rough River stations) and differences among the
downscaling methods and calibrated results were not
significant and thus are not shown here.

Figure 15 shows that SDBC tended to overesti-
mate the 7Q10 high flows compared to the calibrated
results especially for large subbasins (i.e., average
percent difference over all the GCMs of 27% [41 m3/s]
for the Alafia River, 12% [12 m3/s] for the Hillsbo-
rough River, <1% [<1 m3/s] for the Cypress Creek,
and 14% [4 m3/s] for Anclote River). The BCSD_daily
and BCSA 7Q10 results showed lower errors in esti-
mated 7Q10 for all stations (i.e., average percent
error from �11 to 5%). The SDBC results also overes-
timated the 7Q2 high flows compared to calibrated
results (i.e., by an average of 26% [13 m3/s] for Alafia
River, 3% [2 m3/s] for Hillsborough River, 30% [3 m3/s]
for Cypress Creek, and 43% [4 m3/s] for Anclote
River). The BCSD_daily results, in contrast, underes-
timated 7Q2 for all subbasins by an average of �17%
(�9 m3/s) for Alafia River, �32% (�17 m3/s) for the
Hillsborough River, �15% (�1 m3/s) for Cypress
Creek, and �17% (�2 m3/s) for Anclote River. The
BCSA 7Q2 results, on average, showed the best fit to
those estimated from the observations with averaged
errors from �5% (Cypress Creek) to 14% (Anclote
River). Note that the greater error ratios for 7Q2,
especially for the small basins, are due to the small
magnitude of the 7Q2 flows in these watersheds.

While the different GCMs showed differences in
estimates of both 7Q10 and 7Q2, the ranges over the
downscaled GCM results using BCSA were in general
smallest (45%, percent ratio of the 7Q10 ranges
among GCMs compared to calibrated results (i.e.,
7Q10 range of GCMs/calibrated 7Q10, on average
over the stations)) compared to the others (58 and
70% for BCSD_daily and SDBC, respectively). Note
that the variation among the GCMs that derive from
differences in temporal regimes produced by the raw
GCM results are not removed through the bias
correction conducted in this study.
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Model Domain. cal. indicates the results using observed climate
input data. See Table 1 for explanation of four GCMs.
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SUMMARY AND CONCLUSIONS

This study compared the relative ability of three
different statistical downscaling techniques to repro-
duce retrospective subbasin scale spatiotemporal pre-
cipitation characteristics, and to predict retrospective
streamflow statistics when used to drive a physically
based spatially distributed hydrologic model in the
Tampa Bay region of west-central Florida. Four
GCMs were chosen to examine the skills of statistical
downscaling methods. While the retrospective precipi-

tation predictions were downscaled using three
different statistical downscaling methods, the retro-
spective temperature predictions from GCMs were
downscaled using the same CDF mapping bias correc-
tion method that assumes direct correspondence
between the exceedence probabilities of GCM grid cell
and observation location for all cases.

Results indicated that the temporal mean of Tmin

and Tmax were well reproduced by bias correction-
based downscaling. Similarly, all downscaled precipi-
tation results accurately reproduced the temporal
mean of daily precipitation over all subbasins. How-
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ever, the accuracy in reproducing temporal variabil-
ity, spatial variability, and spatial correlation struc-
ture of precipitation varied among the downscaling
methods.

The BCSD_daily results underestimated temporal
variability in daily rainfall and overestimated the
wet-to-wet and dry-to-wet transition probabilities
because the method produced unrealistic highly spa-

TABLE 4. Results of the Two-Sample t-Test for the Statistical Significance of the Difference between the Observed and Simulated Mean
Monthly Streamflows. *Indicates that calibrated mean streamflow for the indicated station and month were not statistically significantly dif-
ferent from the observed mean streamflow at p = 0.05. Similarly, letters in the table (i.e., A: BCCR, B: CCSM, C: CGCM, D: GFDL) indicate
that mean streamflow using the indicated GCM and downscaling technique were statistically equal to the observed mean streamflow at
p = 0.05. See Table 1 for explanation of four GCMs.

Month

vs. Observed Daily Streamflow

Watershed Calibrated BCSD_daily SDBC BCSA

January Alafia * D
Hillsborough A, C A, C A, C
Cypress Creek * B B
Anclote * D B, D D

February Alafia * A, D D D
Hillsborough * A, B, D A, B, C A, B, C, D
Cypress Creek
Anclote * D D A, B, D

March Alafia * A A
Hillsborough * A
Cypress Creek
Anclote * A, D A, D

April Alafia
Hillsborough * A A, B, D A, B, D
Cypress Creek A A
Anclote * A B, C C

May Alafia *
Hillsborough * A A
Cypress Creek A C D
Anclote * A B C, D

June Alafia * A, B A
Hillsborough * B, D A, B
Cypress Creek * A, B, C A, B, D
Anclote * A B, C A, B, D

July Alafia A
Hillsborough C A, C
Cypress Creek * A
Anclote * B, C, D A, C, D

August Alafia * D
Hillsborough D
Cypress Creek * D D
Anclote D

September Alafia * A, B A, B, D B, C, D
Hillsborough A, B, D C, D D
Cypress Creek * A B, D A
Anclote * A, B, D A, B, D

October Alafia * D D
Hillsborough C A, C A
Cypress Creek * B, D B
Anclote * B, D B, C B, C

November Alafia * A A, D D
Hillsborough C D
Cypress Creek A, D
Anclote A, B, C

December Alafia * A, B A, B, D A, B, D
Hillsborough * A, B, D A, B, D A, B
Cypress Creek * B B
Anclote * B

Note: BCSD_daily, bias correction and spatial disaggregation at daily time scale; SDBC, spatial disaggregation and bias correction; BCSA,
bias correction and stochastic analog method.

JAWRA JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION18

HWANG AND GRAHAM



tially correlated low-volume precipitation fields. The
SDBC method improved over the BCSD_daily results
in reproducing temporal variability in daily rainfall
and daily transition probabilities by bias correcting at

the downscaled grid resolution rather than at the
coarse GCM resolution. However, SDBC tended to
overestimate the temporal variability in spatially
averaged precipitation due to the bias correction of
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smooth spatially interpolated GCM results at the
subbasin scale. The BCSA reproduced the observed
daily temporal precipitation variability and transition
probabilities more accurately than the BCSD_daily
and SDBC methods.

In terms of spatial variability in precipitation, sig-
nificant differences between the interpolation-based
downscaling methods and the new BCSA method
were demonstrated. Overall, BCSD_daily failed to
reproduce the observed spatial variability and pro-
duced overcorrelated precipitation fields. SDBC
showed better skill in reproducing spatial variability
compared to BCSD_daily but was still found to over-
estimate spatial correlation. The BCSA successfully
reproduced the spatial variability exhibited by obser-
vations.

The differences among statistical downscaling
techniques propagated into considerable differences
in streamflow simulation results. The BCSD_daily
method tended to underestimate monthly average
streamflow for both wet and dry seasons at all target
stations, due to overprediction of low-volume precipi-
tation over large areas and thus overprediction of ET
losses. The SDBC produced accurate mean stream-
flow estimates, however, overestimated the temporal
standard deviation of daily streamflow in the wet
season and overpredicted the magnitude of high
streamflow events (7Q10, 7Q2, and peak daily
streamflow). Thus, for the SDBC method under/over-
estimation of daily streamflow events apparently can-
celed out to produce approximately correct mean
daily streamflow predictions. The BCSA method
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showed comparable accuracy to the SDBC method in
predicting mean streamflow, and reproduced the wet
season standard deviation of daily streamflow and
the magnitude of high streamflow events more
accurately than the SDBC method. In all the precipi-
tation and streamflow measures used in the study,
the differences among statistical downscaling meth-
ods were more significant than the differences among
GCMs.

It should be recalled that, through the bias correc-
tion process used in all methods, the daily CDF for
precipitation was corrected to be identical to that of
observed precipitation, and as a result mean daily
precipitation over the study period was virtually
identical for all downscaling methods. However, the
results of the streamflow analyses indicate that, due
to the nonlinear and integrative properties of the
hydrologic system, reproducing more detailed precipi-
tation characteristics (i.e., interevent duration,
frequency of spatially averaged precipitation, daily
precipitation spatial correlation structure) is required
to accurately capture even the mean daily stream-
flow.

Accurately simulating both the spatial and tempo-
ral variability in precipitation inputs is important
when assessing hydrologic implications of alternative
climate scenarios in large, low-relief rainfall-domi-
nated watersheds such as the Tampa Bay region in
west-central Florida. Results of this study demon-
strate that for this region simple interpolation-based
statistical downscaling methods, such as BCSD_daily
and SDBC that do not reproduce the spatial correla-
tion structure of daily rainfall were not able to accu-
rately reproduce higher order streamflow statistics
such as the standard deviation of daily streamflow
or the frequency of high streamflow events. Thus, for
low-relief, rainfall-dominated watersheds where spa-
tial variability in daily precipitation is high, the
BCSA method is recommended for use over the
BCSD_daily or SDBC methods. It should be noted
that BCSA can be applied to downscale coarse reso-
lution climate data (including other atmospheric
variables such as, temperature) into any temporal
(e.g., subdaily, monthly) and spatial scale (e.g., grid-
ded or irregularly distributed points) needed for a
particular application, as long as observations are
available to estimate the CDFs and spatial correla-
tion structure of the climate variable (Hwang and
Graham, 2013).

Nevertheless, limitations of BCSA need to be care-
fully considered before applying the method in other
applications. The spatial disaggregation process in
BCSA is conducted independently on a daily basis,
not taking into account characteristics of observed
temporal sequence at the local scale. Thus, the skills
in temporal trends and persistence of downscaled

results rely on the skill of the large-scale bias-
corrected GCMs. That is, if GCMs exhibit unrealistic
temporal sequences of precipitation these limitations
can propagate through the BCSA downscaling proce-
dure into hydrologic predictions (see, for example, the
magnitude of BCSA errors in Figures 8 and 15).
These limitations could possibly be reduced by
employing alternative bias correction methods devel-
oped to replicate observed temporal autocorrelation
and thus interannual variability at multiple time
scales (Johnson and Sharma, 2012; Mehrotra and
Sharma, 2012) or by stochastically redistributing the
temporal structure of climate model output (Ines
et al., 2011).

Furthermore, BCSA is conducted independently
for each GCM grid and does not consider large-
scale spatial correlation. Thus, use of BCSA for
large areas covered by many GCM grids may pro-
duce discontinuities in local spatial correlation
structure at the GCM grid boundaries. If applica-
tion over large domains is required then the proce-
dure could be revised as follows: (1) generate a
library of spatially correlated precipitation fields at
the local scale over the entire (multi-GCM grid)
scale of interest, (2) choose the realization member
that most closely matches the spatially averaged
precipitation calculated over all the GCM grids, (3)
scale the local precipitation field realizations within
each individual GCM grid to match the GCM data
of that grid cell.

The impacts of these BCSA limitations will vary
from region to region, depending on climatic, topo-
graphic, geologic, and hydrologic characteristics.
Therefore, it may be important to conduct similar
quantitative hydrologic modeling experiments using
alternative downscaling techniques to determine the
most appropriate technique for other regions and
applications of interest.

ACKNOWLEDGMENTS

This work is funded in part by the Sectoral Applications
Research Program (SARP) of the NOAA Climate Program Office
and by Tampa Bay Water. We also acknowledge the Program for
Climate Model Diagnosis and Intercomparison (PCMDI) and the
WCRP’s Working Group on Coupled Modelling (WGCM) for their
roles in making available the WCRP CMIP3 multimodel dataset.
Support of this dataset is provided by the Office of Science, U.S.
Department of Energy.

LITERATURE CITED

Abatzoglou, T.J. and J.T. Brown, 2012. A Comparison of Statistical
Downscaling Methods Suited for Wildfire Applications. Interna-
tional Journal of Climatology 32:772-780.

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION JAWRA21

ASSESSMENT OF ALTERNATIVE METHODS FOR STATISTICALLY DOWNSCALING DAILY GCM PRECIPITATION OUTPUTS TO SIMULATE REGIONAL STREAMFLOW



Andr�easson, J., S. Bergstr€om, B. Carlsson, L.P. Graham, and G.
Lindstr€om, 2004. Hydrological Change-Climate Change Impact
Simulations for Sweden. Journal of Human Environment
33:228-234.

Beven, K.J. and G.M. Hornberger, 1982. Assessing the Effect of
Spatial Patterns of Rainfall in Modeling Stream Flow Hydro-
graphs. Water Resources Bulletin 18(5):823-829.

Bicknell, B., J.C. Imhoff, J.L. Kittle, Jr., T.H. Jobes, and A.D. Doni-
gian, Jr., 2001. Hydrologic Simulation Program-FORTRAN
(HSPF): User’s Manual for Version 12. U.S. Environmental Pro-
tection Agency, Athens, Georgia.

Busuioc, A., D. Chen, and C. Hellstrom, 2001. Performance of Sta-
tistical Downscaling Models in GCM Validation and Regional
Climate Change Estimates: Application for SWEDISH Precipita-
tion. International Journal of Climatology 21:557-578.

Ca~n�on, J., F. Dom�ınguez, and J.B. Vald�es, 2011. Downscaling
Climate Variability Associated with Quasi-Periodic Climate
Signals: A New Statistical Approach Using MSSA. Journal of
Hydrology 398:65-75.

Charles, S.P., B.C. Bates, I.N. Smith, and J.P. Hughes, 2004. Sta-
tistical Downscaling of Daily Precipitation from Observed and
Modelled Atmospheric Fields. Hydrological Processes 18:1373-
1394, doi: 10.1002/hyp.1418.

Christensen, J.H. and O.B. Christensen, 2003. Severe Summertime
Flooding in Europe. Nature 421:805-806.

Collins, W.D., C.M. Bitz, M.L. Blackmon, G.B. Bonan, C.S. Brether-
ton, J.A. Carton, P. Chang, S.C. Doney, J.J. Hack, T.B. Hender-
son, J.T. Kiehl, W.G. Large, D.S. McKenna, B.D. Santer, and
R.D. Smith, 2006. The Community Climate System Model Ver-
sion 3 (CCSM3). Journal of Climate 19:2122-2143.

Delworth, T.L., A.J. Broccoli, A. Rosati, R.J. Stouffer, V. Balaji,
J.A. Beesley, W.F. Cooke, K.W. Dixon, J. Dunne, K.A. Dunne,
J.W. Durachta, K.L. Findell, P. Ginoux, A. Gnanadesikan, C.T.
Gordon, S.M. Griffies, R. Gudgel, M.J. Harrison, I.M. Held, R.S.
Hemler, L.W. Horowitz, S.A. Klein, T.R. Knutson, P.J. Kushner,
A.R. Langenhorst, H.-C. Lee, S.-J. Lin, J. Lu, S.L. Malyshev,
P.C.D. Milly, V. Ramaswamy, J. Russell, M.D. Schwarzkopf, E.
Shevliakova, J.J. Sirutis, M.J. Spelman, W.F. Stern, M. Winton,
A.T. Wittenberg, B. Wyman, F. Zeng, and R. Zhang, 2006.
GFDL’s CM2 Global Coupled Climate Models Part 1: Formula-
tion and Simulation Characteristics. Journal of Climate 19:643-
674.

Diaz-Nieto, J. and R.L. Wilby, 2005. A Comparison of Statistical
Downscaling and Climate Change Factor Methods: Impacts on
Lowflows in the River Thames, United Kingdom. Climatic
Change 69:245-268.

Dibike, Y.B. and P. Coulibaly, 2005. Hydrologic Impact of Climate
Change in the Saguenay Watershed: Comparison of Downscal-
ing Methods and Hydrologic Models. Journal of Hydrology
307:145-163.

Enke, W. and A. Spekat, 1997. Downscaling Climate Model Out-
puts into Local and Regional Weather Elements by Classifica-
tion and Regression. Climate Research 8:195-207.

Feddersen, H. and U. Andersen, 2005. A Method for Statistical
Downscaling of Seasonal Ensemble Predictions. Tellus A 57:398-
408.

Flato, G.M. and G.J. Boer, 2001. Warming Asymmetry in Climate
Change Simulations. Geophysical Research Letters 28:195-198.

Fowler, H.J., S. Blenkinsop, and C. Tebaldi, 2007. Linking Climate
Change Modeling to Impacts Studies: Recent Advances in
Downscaling Techniques for Hydrological Modeling. Interna-
tional Journal of Climatology 27:1547-1578.

Furevik, T., M. Bentsen, H. Drange, I.K.T. Kindem, N.G. Kvamsto,
and A. Sorteberg, 2003. Description and Evaluation of the Ber-
gen Climate Model: ARPEGE Coupled with MICOM. Climate
Dynamics 21:27-51.

Geurink, J. and R. Basso, 2013. Development, Calibration, and
Evaluation of the Integrated Northern Tampa Bay Hydrologic
Model. Tampa Bay Water/Southwest Florida Water Manage-
ment District, Clearwater/Brooksville, Florida.

Geurink, J., R. Basso, P. Tara, K. Trout, and M. Ross, 2006a.
Improvements to Integrated Hydrologic Modeling in the Tampa
Bay, Florida Region: Hydrologic Similarity and Calibration Met-
rics. Proceedings of the Joint Federal Interagency Conference
April 2-6, 2006, Reno, Nevada.

Geurink, J., K. Trout, and M. Ross, 2006b. Introduction to the Inte-
grated Hydrologic Model. Proceedings of the Joint Federal
Interagency Conference April 2-6, 2006, Reno, Nevada.

Goovaerts, P., 1997. Geostatistics for Natural Resources Evaluation.
Oxford University Press, New York City, New York, pp. 3-7,
27-36, 127-139, and 152-157.

Graham, L.P., S. Hagemann, S. Jaun, and M. Beniston, 2007. On
Interpreting Hydrological Change from Regional Climate Mod-
els. Climatic Change 81:97-122, doi: 10.1007/s10584-006-9217-0.

Haan, T.C., 1977. Statistical Methods in Hydrology. The Iowa State
University Press, Ames, Iowa, pp. 303-305.

Harbaugh, A.W. and M.G. McDonald, 1996. Programmer’s Documen-
tation for MODFLOW-96, an Update to the U.S. Geological Sur-
vey Modular Finite-Difference Ground-Water Flow Model. U.S.
Geological Survey Open-File Report 96-486, Reston, Virginia.

Hargreaves, G.H. and Z.A. Samani, 1985. Reference Crop Evapo-
transpiration from Temperature. Applied Engineering in Agri-
culture 1:96-99.

Hay, L.E., M.P. Clark, R.L. Wilby, W.J. Gutowski, G.H. Leavesley,
Z. Pan, R.W. Arritt, and E.S. Takle, 2002. Use of Regional Cli-
mate Model Output for Hydrologic Simulations. Journal of
Hydrometeorology 3:571-590.

Hidalgo, H.G., M.D. Dettinger, and D.R. Cayan, 2008. Downscaling
with Constructed Analogues: Daily Precipitation and Temper-
ature Fields over the United States. California Energy
Commission, PIER Energy-Related Environmental Research.
CEC-500-2007-123.

Hwang, S. and W.D. Graham, 2013. Development and Comparative
Evaluation of a Stochastic Analog Method to Downscale Daily
GCM Precipitation. Hydrology and Earth System Sciences
17:4481-4502, doi: 10.5194/hess-17-4481-2013.

Hwang, S., W.D. Graham, A. Adams, and J. Geurink, 2013. Assess-
ment of the Utility of Dynamically-Downscaled Regional Reanal-
ysis Data to Predict Streamflow in West Central Florida Using
an Integrated Hydrologic Model. Regional Environmental
Change 13(1):S69-S80, doi: 10.1007/s10113-103-0406-x.

Hwang, S., W.D. Graham, J.L. Hern�andez, C. Martinez, J.W.
Jones, and A. Adams, 2011. Quantitative Spatiotemporal Evalu-
ation of Dynamically Downscaled MM5 Precipitation Predictions
over the Tampa Bay Region, Florida. Journal of Hydrometeorol-
ogy 12:1447-1464.

Iizumi, T., M. Nishimori, K. Dairaku, S.A. Adachi, and M. Yokoza-
wa, 2011. Evaluation and Intercomparison of Downscaled Daily
Precipitation Indices over Japan in Present-Day Climate:
Strengths and Weaknesses of Dynamical and Bias Correction-
Type Statistical Downscaling Methods. Journal of Geophysical
Research 116:D01111, doi: 10.1029/2010JD014513.

Ines, A.V.M. and J.W. Hansen, 2006. Bias-Correction of Daily GCM
Rainfall for Crop Simulation Studies. Agricultural and Forest
Meteorology 138:44-53.

Ines, A.V.M., J.W. Hansen, and A.W. Robertson, 2011. Enhancing
the Utility of Daily GCM Rainfall for Crop Yield Prediction.
International Journal of Climatology 31:2168-2182.

Johnson, F. and A. Sharma, 2012. A Nesting Model for Bias Cor-
rection of Variability at Multiple Time Scales in General Circu-
lation Model Precipitation Simulations. Water Resources
Research 48:W01504, doi:10.1029/2011WR010464.

JAWRA JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION22

HWANG AND GRAHAM



Karl, T. and K. Trenberth, 2003. Modern Global Change. Science
302:1719-1722.

Leander, R., T.A. Buishand, B.J.J.M. van den Hurk, and M.J.M. de
Wit, 2008. Estimated Change in Flood Quartiles of the River
Meuse from Resampling of Regional Climate Model Output.
Journal of Hydrology 351:331-343.

Maurer, E.P. and H.G. Hidalgo, 2008. Utility of Dialy vs. Monthly
Large-Scale Climate Data: An Intercomparison of Two Statisti-
cal Downscaling Methods. Hydrology and Earth System Sci-
ences 12:551-563.

Maurer, E.P., H.G. Hidalgo, T. Das, M.D. Dettinger, and D.R. Ca-
yan, 2010. The Utility of Daily Large-Scale Climate Data in the
Assessment of Climate Change Impacts on Daily Streamflow in
California. Hydrology and Earth System Sciences 14:1125-1138.

Maurer, E.P., A.W. Wood, J.C. Adam, D.P. Lettenmaier, and B. Ni-
jssen, 2002. A Long-Term Hydrologically-Based Data Set of
Land Surface Fluxes and States for the Conterminous United
States. Journal of Climate 15(22):3237-3251.

McGregor, J.L., 1997. Regional Climate Modeling. Meteorology and
Atmospheric Physics 63:105-117, doi: 10.1007/BF01025367.

Mearns, L.O., I. Bogardi, F. Giorgi, I. Matyasovszky, and M. Pale-
chi, 1999. Comparison of Climate Change Scenarios Generated
from Regional Climate Model Experiments and Statistical
Downscaling. Journal of Geophysical Research 104:6603-6621.

Mehrotra, R. and A. Sharma, 2012. An Improved Standardization
Procedure to Remove Systematic Low Frequency Variability
Biases in GCM Simulations. Water Resources Research 48:
W12601, doi:10.1029/2012WR012446.

Milly, P.C.D. and P.S. Eagleson, 1988. Effect of Storm Scale on Sur-
face Runoff Volume. Water Resources Research 24(4):620-624.

Murphy, A.J., 1999. An Evaluation of Statistical and Dynamical
Techniques for Downscaling Local Climate. Journal of Climate
12:2256-2284.

Panofsky, H.A. and G.W. Brier, 1968. Some Applications of Statis-
tics to Meteorology. The Pennsylvania State University, Univer-
sity Park, Pennsylvania, 224 pp.

Rokicki, R., 2002. Evaluation and Performance of Rainfall Disag-
gregation Methods for West-Central Florida. M.S. Thesis, Uni-
versity of South Florida, Tampa, Florida.

Ross, M., J. Geurink, A. Said, A. Aly, and P. Tara, 2005. Evapo-
transpiration Conceptualization in the HSPF-MODFLOW Inte-
grated Models. Journal of the American Water Resources
Association 41:1013-1025.

Ross, M., A. Said, K. Trout, P. Tara, and J. Geurink, 2004. A New
Discretization Scheme for Integrated Surface and Groundwater
Modeling. Hydrological Science and Technology 21:143-156.

Sato, T., F. Kimura, and A. Kitoh, 2007. Projection of Global
Warming onto Regional Precipitation over Mongolia Using a
Regional Climate Model. Journal of Hydrology 333:144-154.

Schmidli, J., C. Frei, and P.L. Vidale, 2006. Downscaling from
GCM Precipitation: A Benchmark for Dynamical and Statistical
Downscaling Methods. International Journal of Climatology
26:679-689.

Shepard, D.S., 1984. Computer Mapping: The SYMAP Interpola-
tion Algorithm. In: Spatial Statistics and Models, G.L. Gaile
and C.J. Willmott (Editors). D. Reidel, Norwell, Massachusetts,
pp. 133-145.

Taussky, O. and J. Todd, 2006. Cholesky, Toeplitz and the Triangu-
lar Factorization of Symmetric Matrices. Numerical Algorithms
41:197-202.

Vasiliades, L., A. Loukas, and G. Patsonas, 2009. Evaluation of a
Statistical Downscaling Procedure for the Estimation of Climate
Change Impacts on Droughts. Natural Hazards Earth System
Science 9:879-894.

Widmann, M., C.C. Bretherton, and E.P. Salathe, Jr., 2003. Statis-
tical Precipitation Downscaling over the Northwestern United

States Using Numerically Simulated Precipitation as a Predic-
tor. Journal of Climate 16:799-816.

Wilby, R.L. and T.M.L. Wigley, 1997. Downscaling General Circula-
tion Model Output: A Review of Methods and Limitations. Pro-
gress in Physical Geography 21:530-548.

Wilby, R.L. and T.M.L. Wigley, 2000. Precipitation Predictors for
Downscaling: Observed and General Circulation Model Relation-
ships. International Journal of Climatology 20:641-661.

Wilby, R.L., T.M.L. Wigley, D. Conway, P.H. Jones, B.C. Hewitson,
J. Main, and D.S. Wilks, 1998. Statistical Downscaling of Gen-
eral Circulation Model Output: A Comparison of Methods.
Water Resources Research 34:2995-3008.

Wood, A.W., L.R. Leung, V. Sridhar, and D.P. Lettenmaier, 2004.
Hydrologic Implications of Dynamical and Statistical
Approaches to Downscaling Climate Model Outputs. Climatic
Change 62:189-216.

Wood, A.W., E.P. Maurer, A. Kumar, and D.P. Letternmaier, 2002.
Long-Range Experimental Hydrologic Forecasting for the East-
ern United States. Journal of Geophysical Research 107:4429,
doi: 10.1029/2001JD000659.

Zorita, E. and H. von Storch, 1999. The Analog Method as a Simple
Statistical Downscaling Technique: Comparison with More Com-
plicated Methods. Journal of Climate 12:2474-2489.

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION JAWRA23

ASSESSMENT OF ALTERNATIVE METHODS FOR STATISTICALLY DOWNSCALING DAILY GCM PRECIPITATION OUTPUTS TO SIMULATE REGIONAL STREAMFLOW


