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Abstract:

Skilful and reliable precipitation data are essential for seasonal hydrologic forecasting and generation of hydrological data.
Although output from dynamic downscaling methods is used for hydrological application, the existence of systematic errors in
dynamically downscaled data adversely affects the skill of hydrologic forecasting. This study evaluates the precipitation data
derived by dynamically downscaling the global atmospheric reanalysis data by propagating them through three hydrological
models. Hydrological models are calibrated for 28 watersheds located across the southeastern United States that is minimally
affected by human intervention. Calibrated hydrological models are forced with five different types of datasets: global
atmospheric reanalysis (National Centers for Environmental Prediction/Department of Energy Global Reanalysis and European
Centre for Medium-Range Weather Forecasts 40-year Reanalysis) at their native resolution; dynamically downscaled global
atmospheric reanalysis at 10-km grid resolution; stochastically generated data from weather generator; bias-corrected
dynamically downscaled; and bias-corrected global reanalysis. The reanalysis products are considered as surrogates for large-
scale observations. Our study indicates that over the 28 watersheds in the southeastern United States, the simulated hydrological
response to the bias-corrected dynamically downscaled data is superior to the other four meteorological datasets. In comparison
with synthetically generated meteorological forcing (from weather generator), the dynamically downscaled data from global
atmospheric reanalysis result in more realistic hydrological simulations. Therefore, we conclude that dynamical downscaling of
global reanalysis, which offers data for sufficient number of years (in this case 22 years), although resource intensive, is relatively
more useful than other sources of meteorological data with comparable period in simulating realistic hydrological response at
watershed scales. Copyright © 2013 John Wiley & Sons, Ltd.
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INTRODUCTION

Global climate models (GCMs) are the most widely used
tools for modelling future climate. The output GCMs or
global reanalyses do well in representing large-scale
atmospheric circulation features, but they lack in reproducing
surface variables (e.g. precipitation) at a scale that is often
required for hydrological application (Xu 1999;Wilby et al.,
2000; Fowler et al., 2007). This is also the reasonwhy output
from global climate models cannot be directly utilized for
evaluating future hydrologic impact of climate change
(Wood et al., 2004). Therefore, dynamic downscaling (e.g.
Mesinger et al., 2006; Kanamitsu and Kanamaru, 2007) has
now become an important component of watershed-scale
hydrologic modelling.
The regions that exhibit significant interannual variations

in precipitation, e.g. southeastern United States (SEUS;
Wang et al., 2010; Chan and Misra, 2010; Seager et al.,
2008; Ropelewski andHalpern, 1987), present a challenge to
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produce reliable hydrological forecasts. However, for
sustainable development of water resources in such regions,
reliable hydrological forecasts are necessary for making
optimal decisions on water resource management.
Yao and Georgakakos (2001) showed that inclusion of

future climate information into hydrological models lead
to more accurate hydrologic forecasts, which can result in
economic benefits (e.g. increases in hydropower reven-
ues). One of the primary obstacles to producing good
hydrological forecasts is the absence or lack of skilful and
reliable meteorological forcing. Another limitation is the
inherent uncertainties of the hydrological models.
Furthermore, the domain of this study, i.e. the SEUS, is
subject to extreme weather and climate events (e.g.
hurricanes, seasonal droughts and floods) that are usually
difficult for climate models to simulate or forecast.
Together, these factors pose a challenge in developing
hydrological models for watersheds in the region
(HEPEX, 2006). More importantly, over the SEUS
region, seasonal climate prediction models do not show
very promising skill in forecasting precipitation and
temperature in summer (Stefanova et al., 2012b). High-
resolution rainfall data that capture spatial and temporal
distributions of rainfall in great detail is essential for
hydrological application.
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Two approaches have come to the fore to bridge the
gap that exists between the availability of meteorological
forcing from relatively coarse resolution global models
and the requirement of finer resolution forcing for
hydrological models: development of high-resolution
regional reanalysis (e.g. Mesinger et al., 2006) or creation
of high-resolution atmospheric data from downscaling
global reanalysis (e.g. Kanamitsu and Kanamaru, 2007;
Stefanova et al., 2012a). The conventional regional
reanalysis use global reanalysis as a lateral boundary
forcing along with regional data assimilation system to
produce a relatively high-resolution meteorological data-
set. Many studies claim that dynamical downscaling from
global reanalysis amounts to regional reanalysis (Von
Storch et al., 2000; Kanamitsu and Kanamaru, 2007).
Kanamitsu and Kanamaru (2007) argue that reanalysis
products obtained from downscaling global reanalysis can
offer computational advantage and greater regional detail
compared with the current advanced regional reanalysis.
In the dynamic downscaling of global reanalysis, regional
climate models (RCMs) are forced at their lateral
boundaries by the global reanalysis to generate the
regional climate. An RCM with a relatively high fidelity
is a useful tool in describing regional scale climate
conditions and in producing high-resolution meteoro-
logical data. RCMs have the potential to improve the
spatial detail of simulated climate because of improved
representation of subgrid scale features. Although the
ability of RCMs to reproduce the observations has
improved significantly over the years, the use of output
from the RCMs is likely to be limited by the systematic
errors in global reanalysis products (e.g. Mooney et al.,
2011; Frei et al., 2003; Hagemann et al., 2004). Hongwei
et al. (2012) observed significant differences in the
simulations of the weather research and forecasting model
forced with three global reanalysis datasets. Similarly,
Stefanova et al. (2012a) observed significant biases in the
generated regional climate using the regional spectral
model (Kanamitsu and Kanamaru 2007) forced with
global reanalysis of the National Centers for Environ-
mental Prediction/Department of Energy Global Reanaly-
sis (NCEP-R2; Kanamitsu et al., 2002) and the European
Centre for Medium-Range Weather Forecasts (ECMWF)
40-year Reanalysis (ERA-40; Uppala et al., 2006).
In many hydrological applications, the hydrological

models are forced with downscaled meteorological data
without a proper assessment of the model forcing. The
biases that exist in the forcing data will subsequently
propagate through the hydrological models, resulting in
simulation biases that have direct consequences on
forecast quality and operational usefulness. Therefore,
to use the high-resolution climate model data for
hydrological modelling and for operational purposes,
the output from the RCM needs to be suitably corrected
for bias (Wilby et al., 2000). Bias-correction methods are
usually applied to correct systematic errors in the output
of atmospheric models.
Bias-correction methods include correction to the mean

(e.g. Bastola and François, 2012), standardization (Wilby
Copyright © 2013 John Wiley & Sons, Ltd.
et al., 2004) or quartile-based mapping (Li et al., 2010).
Standardization of a variable (i.e. by subtracting a mean
from it and dividing the difference by the standard
deviation) is widely used in statistical downscaling
methods to reduce bias. Similarly, the quantile mapping
method applies correction not only to the mean but also to
the distribution. Therefore, this method corrects for errors
in variability as well.
Wood et al. (2004) used the quantile-based approach to

correct monthly simulated variables to force a hydro-
logical model. This approach is relatively simple and
extends the correction of the means to the shape of the
distribution. In other words, this method is capable of
correcting errors in variability as well. However, it maps
only modelled values to observed values. Therefore,
extreme values (e.g. in a projected future climate) that
may not have been observed in the past cannot be
properly corrected. This quantile-based approach has
been successfully implemented in hydrological applica-
tions. This method was however found to produce bias, as
it does not preserve the relationship between precipitation
and temperature (Zhang and Georgakakos, 2011). More
recently, Piani and Haerter (2012) presented a statistical
bias-correction methodology that allows climate model
output of both temperature and precipitation to be used as
forcing for impact models.
The objective of this study is to evaluate regional and

global reanalysis datasets for the SEUS region by
propagating them through a suite of conceptual hydro-
logical models and comparing the subsequent output to
observations. For this purpose, a number of watersheds
within the region are selected. With the widespread
availability of terrestrial data based on geographic
information system, distributed hydrologic models, which
explicitly account for spatial variation in topography,
meteorological inputs, and water movement, have become
popular (e.g., Ajami et al., 2006; Georgakakos et al.,
2004). Distributed modelling holds significant promise for
better simulation of streamflow with high spatial reso-
lution. However, uncertainty in model structure and
parameter and uncertainty in rainfall estimates contribute
to significant uncertainty in streamflow (Georgakakos
et al., 2004). Moreover, for the watersheds selected in
this study, the rainfall time series, a principal input to
drive hydrological models, is available only at a
watershed scale. Therefore, this study focuses on only
spatially lumped conceptual models. Moreover, identifi-
cation of streamflow records suitable for the evaluation of
downscaling methods presents somewhat different pro-
blems than those that exist for the precipitation and
temperature records. In the United States, almost all
gauged streams are affected to some extent by human
interventions such as upstream reservoirs, upstream
diversion works, and interbasin transfer of water.
Therefore, selecting watersheds that are free of or
minimally affected by water management is essential for
parameterization and subsequent application of watershed
models for evaluation of model forcing. Hydrological
models, identified for selected watersheds, are then forced
Hydrol. Process. (2013)
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with the downscaled precipitation datasets. Simulations
are also made with the raw large-scale gridded precipi-
tation dataset. The results from the hydrological models
with the different meteorological forcings are discussed in
the subsequent sections.
METHODOLOGY

Watershed selection

In this study, we select watersheds that are free of or
minimally affected by water management. The water-
sheds included in this study are from the Model Parameter
Estimation Experiment (MOPEX) dataset (Schaake et al.,
2006), which was based on Hydro Climatic Data Network
(HCDN) (Slack et al., 1993) and hydroclimatological data
set of Walilis et al. (1991). For the selected watersheds,
the hydrometeorological data extend well beyond 1970. It
is assumed that water management minimally affects the
selected watersheds, as HCDN in its collection excluded
watersheds that are subject to diversion, transfer and
significant change in land cover. For watersheds recently
impacted by human activities, HCDN included only the
record for the earlier period during which the criterion for
non-impairment of natural stream was met. Both
networks include only those gauges believed to be
unaffected by upstream regulation that have long enough
data records to be suitable for climate studies. Further-
more, MOPEX used only those datasets that met the
precipitation gauge density requirement.
A total of 28 watersheds located within the SEUS

(Figure 1) are considered in this study. The attributes of
the selected watersheds are shown in Table I. For model
calibration, the aerial average rainfall and potential
evapotranspiration data, both key to the forcing required
for the hydrological models, are taken fromMOPEX datasets,
Figure 1. Location of the 28 watersheds within th

Copyright © 2013 John Wiley & Sons, Ltd.
as are the streamflow data required for the estimation of
hydrological model parameters.
Datasets

The two fine-scale reanalysis precipitation data obtained
by dynamically downscaling two different global reanalysis
following Stefanova et al. (2012a) were used. Stefanova et
al. (2012a) have downscaled global atmospheric reanalysis
(NCEP-R2 and ECMWF ERA-40) with the regional
spectral model to generate CLARReS10_R2 and
CLARReS10_ERA over the domain of the SEUS at a
horizontal resolution of 10 km for the period of 1979–2001.
Although both ECMWF ERA-40 and NCEP assimilate
similar input data, they differ in the structure,
parameterization and resolution of their data assimilation
models. They also differ in their methods of processing
input observations. The objective of the downscaling is to
construct a high-resolution proxy dataset that can be
beneficial to operational weather and climate prediction
research by readily providing higher resolution data for
verification. Although these products show some systematic
errors, the downscaled reanalyses show good agreement
with observations in terms of both the relative seasonal
distribution and the diurnal structure of precipitation
(Stefanova et al., 2012a; Misra et al., 2011).
Given the systematic errors associated with global and

regional scale models, their output is often not directly
applicable as input for rainfall–runoff models (RR).
Therefore, a statistical bias-correction method is needed
for correcting climate model output to produce long-term
hydrological time series. Biases in RR models can result
from the input data, the estimated model parameters or the
simplifying assumption used in such models. These
biases will then propagate through RR models, degrading
the overall quality of the resulting simulation. Conse-
e southeastern United States used in this study

Hydrol. Process. (2013)
DOI: 10.1002/hyp



Table I. Description and characteristics of the 28 watersheds located within the region of southeastern United States

SN

Basin
(USGS
ID) Lon Lat

Area
(sq mi)

Rain
/pet

Annual
ave

runoff
(cumec)

Runoff
/rain

Annual
rain (mm) River system

1 2456500 �87.0 33.7 885 1.47 45.6 0.44 1425 Locust Fork at Sayre, AL
2 3574500 �86.3 34.6 320 1.53 17.3 0.45 1467 Paint Rock River near Woodville, AL
3 2414500 �85.6 33.1 1675 1.47 86.3 0.44 1425 Tallapoosa River at Wadley, AL
4 2296750 �81.9 27.2 1367 1.07 44.8 0.32 1248 Peace River at Arcadia, FL
5 2329000 �84.4 30.6 1140 1.29 49.3 0.39 1349 Ochlockonee River near Havana, FL
6 2365500 �85.8 30.8 3499 1.42 171.9 0.42 1425 Choctawhatchee River at Caryville, FL
7 2375500 �87.2 31.0 3817 1.46 201.2 0.43 1493 Escambia River near Century, FL
8 2236000 �81.4 29.0 3066 1.03 97.7 0.3 1293 St. Johns River near Deland, FL
9 2192000 �82.8 34.0 1430 1.4 65.7 0.42 1333 Broad River near Bell, GA
10 2202500 �81.4 32.2 2650 1.1 85.4 0.33 1189 Ogeechee River near Eden, GA
11 2217500 �83.4 33.9 392 1.5 19.9 0.44 1385 Middle Oconee River near Athens, GA
12 2347500 �84.2 32.7 1850 1.31 78 0.39 1317 Flint River near Culloden, GA
13 2383500 �84.8 34.6 831 1.55 48 0.46 1528 Coosawattee River near Pine Chapel, GA
14 2339500 �85.2 32.9 3550 1.48 189.3 0.44 1475 Chattahoochee River at West Point, GA
15 2387000 �84.9 34.7 687 1.55 37.2 0.46 1433 Conasauga River at Tilton, GA
16 2387500 �84.9 34.6 1602 1.53 87.6 0.45 1480 Oostanaula River at Resaca, GA
17 2102000 �79.1 35.6 1434 1.24 51 0.37 1171 Deep River at Moncure, NC
18 2118000 �80.7 35.8 306 1.47 13.9 0.44 1257 South Yadkin River near Mocksville, NC
19 2126000 �80.2 35.1 1372 1.24 48.9 0.37 1173 Rocky River near Norwood, NC
20 2138500 �81.9 35.8 67 1.77 4 0.51 1436 Linville River near Nebo, NC
21 3443000 �82.6 35.3 296 2.68 33.5 0.64 2156 French Broad River at Blantyre, NC
22 3451500 �82.6 35.6 945 2.34 70.7 0.59 1544 French Broad River at Asheville, NC
23 3504000 �83.6 35.1 52 2.08 4.6 0.57 1895 Nantahala River near Rainbow Springs, NC
24 3512000 �83.4 35.5 184 1.94 14 0.54 1720 Oconaluftee River at Birdtown, NC
25 3550000 �84.0 35.1 104 1.92 8.5 0.54 1846 Valley River at Tomotla, NC
26 2156500 �81.4 34.6 2790 1.58 139.1 0.46 1319 Broad River near Carlisle, SC
27 2165000 �82.2 34.4 236 1.38 10.6 0.41 1340 Reedy River near Ware Shoals, SC
28 3455000 �83.2 36.0 1858 2.14 114.5 0.56 1340 French Broad River near Newport, TN
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quently, the biases in model outputs limit their use in
water resources decision making.
In this study, quantile-based bias-correction method

(Wood et al. 2002) is implemented to correct for
systematic bias in rainfall. For each grid, the cumulative
distribution function (CDF) of observed and regional
reanalysis datasets is derived. The empirical CDF is
applied to precipitation variables.

X̂m
i;t ¼ F�1

obs Fmod Xm
i;t

� �� �
(1)

where x̂mi;t x
m
i,t are the tth corrected and uncorrected

estimates of a variable i, t is the time step, and m is the
month for the selected grid. Fobs(�) and Fmod(�) are the
empirical CDFs of the observed and modelled datasets for
the same grid.
The method is implemented independently on each grid,

for each month, and for each variable. The method maps
modelled values to observed values; therefore, extreme
values outside the observed values cannot be obtained. As
this analysis is carried out for a historical period, we did not
account for extreme values outside the observed values,
which otherwise could have been important for correcting
biases for future climate scenarios.
For the evaluation of potential rainfall datasets for

hydrological application, the following nine datasets
(Table II), constructed from five types of dataset discussed
earlier, were considered: (1) NCEP-R2 (OriR2; Kanamitsu
Copyright © 2013 John Wiley & Sons, Ltd.
et al. 2002), (2) ECMWF ERA-40 (OriERA; Uppala et al.
2006), (3) CLARReS10_R2 (DSR2; Stefanova et al.
2012b), (4) CLARReS10_ERA (DSERA; Stefanova et al.
2012a), (5) bias-corrected CLARReS10_R2 (BC_DSR2),
(6) bias- corrected CLARReS10_ERA (BC_DSERA, (7)
bias-corrected R2 (BC_OriR2), (8) bias- corrected
ERA40 (BC_OriERA) and (9) synthetically generated
data (using a weather generator, WGEN; Richardson and
Wright 1984). To generate model forcing for hydrological
model from gridded simulated rainfall, spatially averaged
rainfall over each watershed is computed.
The weather generator model WGEN (Richardson and

Wright, 1984) used in this study is a stochastic model that
has been previously applied across the United States (e.g.
Richardson and Wright, 1984). It is a statistical model
used widely to generate daily sequence of weather
variables. WGEN has two sets of parameters: one related
to occurrence of precipitation and the other related to
estimation of amounts of precipitation. It uses a first-order
Markov process that requires two parameters, namely
probabilities of wet day following wet day and wet day
following dry day, to model precipitation occurrence.
WGEN uses a two-parameter gamma distribution to
model the distribution of rainfall amounts. The two
parameters, shape and scale, for each location are
determined from the observed records. In this study, the
parameters of WGEN are estimated on the basis of aerial
average rainfall taken from MOPEX project.
Hydrol. Process. (2013)
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Table II. Rainfall data set used in this study

SN Data set Resolution (�) Name Remarks

1 NCEP-R2 2.5*2.5 OriR2 Raw
2 ECMWF ERA-40 2.5*2.5 OriERA Raw
3 CLARRReSS10_R2 0.1*0.1 DSR2 Downscaled (Stefanova et al. 2012b)
4 CLARESSeS10_ERA 0.1*0.1 DSERA Downscaled (Stefanova et al. 2012b)
5 BC_NCEP-R2 0.25*0.25 OriR2_BC Bias-corrected raw data
6 BC_ECMWF ERA-40 0.25*0.25 OriERA_BC Bias-corrected raw data
7 BC_CLARRReSS10_R2 0.25*0.25 DSR2_BC Downscaled and bias corrected
8 BC_CLARESSeS10_ERA 0.25*0.25 DSERA_BC Downscaled and bias corrected
9 Synthetically generated Watershed scale WGEN

EVALUATION OF PRECIPITATION DATA FOR HYDROLOGICAL APPLICATION
Hydrological models

In hydrological modelling, uncertainty stems from a
variety of sources. Despite their known limitations,
conceptual rainfall–runoff models continue to be widely
used for assessing the impacts of climate change on water
resources and for projecting potential ranges of future
climate change impacts (e.g. Bastola et al., 2011b). In this
study, the uncertainty in simulation is accounted for by
combining simulations obtained from three conceptual
model structures and their behavioural model parameters.
Three RR models are used in this study: the hydrologic
model (HYMOD), the Nedbør-Afstrømnings model
(NAM), and the TANK model.
HYMOD (Wagener et al., 2001) proposed by Boyle

(2001) is a conceptual and lumped model. HYMOD uses
a nonlinear tank connected with two series of linear tanks
in parallel to model rainfall excess mechanism. The NAM
(Madsen 2000), developed at the Institute of Hydro-
dynamics and Hydraulic Engineering at the Technical
University of Denmark, is another widely used conceptual
lumped rainfall–runoff model. The model accounts for the
water content in a number of different but interrelated
storages, i.e. surface zone, root-zone and groundwater.
Similarly, the TANK model used in this study is based on
Sugawara (1995). It uses a number of vertical tanks, with
side and bottom outlets, that are arranged vertically in
series to model infiltration and saturated and unsaturated
flows, through flow at watershed scale.
In all the three models described earlier, the snowmelt

component of hydrological cycle is modelled using
simple degree approach. In this approach, temperature is
used as parameter for modelling snowmelt. And for this
study, it is assumed that when air temperature is greater
than zero, the precipitation falls as rain, and when air
temperature is below zero, it falls as snow. The snowmelt
is then calculated on the basis of the degree-day
coefficient CS (mm/�C/day) and temperature. The
snowmelt is allowed to store in a simple storage tank.
The rainfall–runoff models, discussed earlier, require

the calibration of key parameters to yield reliable
predictions (Gupta et al., 2003). In the present applica-
tion, HYMOD, NAM and TANK require 6, 10 and 16
parameters, respectively, to be estimated through model
calibration. Several studies discuss problems associated
with model calibration and parameter uncertainty (e.g.
Kuczera, 1997; Beven et al., 1992; Duan et al., 1992).
Copyright © 2013 John Wiley & Sons, Ltd.
Hydrological modelling literature in general agrees that
large combinations of parameters can result in equally
acceptable model simulation (Beven, 2005). Therefore,
any investigation that intends to evaluate different types
of model forcing needs to address this problem, as the
modelling inferences will be conditional upon the
selected parameter. We therefore implement a multimodel
and multiparameter simulation to conduct a conclusive
evaluation of the meteorological forcing data. The
generalized likelihood uncertainty estimation (GLUE)
method (Beven and Binley, 1992) is implemented to
account for parametrically and structurally different
hydrological models, i.e. multiparameter and multimodel.
In GLUE, the ensemble simulation is constructed by
weighting the model prediction on the basis of each
model’s likelihood measure (Beven and Binley, 1992).
The methodology for the construction of ensemble

simulation is briefly outlined here.

(a) For the selected models, the prior distribution or the
prior range of model parameter is chosen. For
simplicity, prior distribution is represented through
uniform distribution from a specified range of values
for each of the model parameters (Table III).

(b) The measure to evaluate model performance and a
threshold that can be used to differentiate between
behavioural and non-behavioural solution is selected.
The threshold acts as a minimum performance accept-
able for a set of parameters. Typical values of 0.5 have
been selected in a number of studies (e.g. Tolson and
Shoemaker 2008). In this study, Nash–Sutcliffe
efficiency criterion is selected as the goodness-of-fit
measure.

(c) For each of the selected model, simulations are made
with parameters sampled from its prior distribution.
Each simulation is then associated with a model
performance. For each model simulation and the
corresponding parameter set that result in model
performance, a value greater than a specified threshold
value is retained.

(d) The model performance value for retained simulation
for the entire model is then rescaled so that their
cumulative sum equals 1. Subsequently, this rescaled
likelihood value that is associated with each retained
simulation is subsequently used to produce likelihood
weighted ensemble output and range of prediction.
Hydrol. Process. (2013)
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Table III. Description of parameters and the range of values used for model calibration

SN Model Parameters Range Definition

1

HYMOD

Cmax 1–500 Maximum storage capacity
2 Bexp 0.1–2 A measure of spatial variability of soil moisture storage
3 Alpha 0.1–0.99 A factor that distributes water between slow and fast flow reservoir
4 Kq 0.001–0.1 Time constant parameter for quick flow reservoir
5 Ks 0.1–0.99 Time constant parameter for slow flow reservoir
6 CS 2.–4. Degree day coefficient
7

NAM

Umax 10–20 Maximum storage capacity of surface storage
8 Lmax 50–250 Maximum storage capacity of lower zone storage
9 CQOF 0.01–0.99 Runoff coefficient for overland flow
10 TOF 0.0–0.7 Threshold for overland flow
11 TIF 0.0–0.7 Threshold for interflow
12 TG 0.0–0.7 Threshold for recharge
13 CK IF 500–1000 Time constant for interflow
14 CK1, 2 3.–48. Time constant for overland flow
15 CK BF 500–5000 Time constant for groundwater reservoir
16 CS 2. –4. Degree day coefficient
17

TANK

A11 0.01–0.8 Top tank, bottom outlet coefficient
18 A12 0–0.8 TOP tank, bottom side outlet coefficient
19 A13 0–0.8 TOP tank, top side outlet coefficient
20 A21 0–0.8 Middle tank, bottom outlet coefficient
21 A22 0–0.8 Middle tank, side outlet coefficient
22 A31 0–0.8 Bottom tank, bottom outlet coefficient
23 A32 0–0.8 Bottom tank, side outlet coefficient
24 A4 0–0.8 Groundwater storage coefficient
25 H11 0.1–100 Height of side outlet of TOP tank
26 H12 0.1–5 Height of side outlet of TOP tank
27 H13 0.1–6 Height of side outlet of TOP tank
28 H22 0.1–7 Height of side outlet of middle tank
29 H33 0.1–8 Height of side outlet of bottom tank
30 K1 0.0–0.5 Coefficient that control flow between top and middle tank
31 K2 0.0–0.5 Coefficient that control flow between primary and

secondary storage of top tank
32 CS 2. –4. Degree day coefficient

S. BASTOLA AND V. MISRA
The prediction range is constructed using Equation 2
(Beven and Freer 2001).

P Ẑ t < z
� � ¼

Xn
i¼1

L
h
f θið Þ Ẑ t;i < z

i��� (2)

where Ẑ is the variable simulated by the model at time t, f
(θi) is the ith set of behavioural model parameter, L is the
rescaled likelihood value and n is the total number of
behavioural simulation, i.e. sum of behavioural para-
meters for set of selected model.
The hydrological simulation is run at a daily time step

using the three conceptual models calibrated for the periods
1949–1959 and validated for the periods 1960–1970.
The nine datasets introduced in the methodology

section are referred to as test datasets. The control data
(e.g. observed streamflow or streamflow simulated with
observed rainfall) are defined as a reference dataset,
against which the test datasets are evaluated. In this study,
the test datasets are evaluated by analyzing the following:
(1) discrepancies between the observed streamflow and
the outputs of the model forced with the test data (model
error hereafter) and (2) discrepancies between streamflow
simulated with observed rainfall and the output obtained
Copyright © 2013 John Wiley & Sons, Ltd.
from the model forced with test data (model-propagated
error hereafter).
The control data are the model forcing data used for

calibrating the parameter of RR models so that the
differences between observed and simulated streamflow
values are minimal. In this study, the closeness of the fit is
evaluated quantitatively using the following objective
criteria: (a) the Nash–Sutcliffe efficiency index (NSE)
(Equation 3), which reflects the overall agreement of the
shape of the hydrograph, and (b) volume error (VE)
(Equation 4).

NSE ¼ 1�
Xn
i¼1

�
Qobs i -Qsim iÞ2=

Xn
i¼1

Qobs ið Þ2 (3)

VE ¼
Xn
i¼1

�
Qsim i -Qobs iÞ=Qobs i (4)

where Qobs and Qsim are the observed and simulated stream
flows. Qobs refers to the measured streamflow while
estimating model error and the model-simulated flow with
control input while estimating model-propagated error.
Control flow is the model simulated flow for the evaluation
period with measured forcing.
Hydrol. Process. (2013)
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The values of parameters estimated through model
calibration are sensitive to the period and climatic condition
for which the model is calibrated (Bastola et al., 2011a).
Therefore, the simulation for a period different from the one
used for model calibration is likely to result in biases. This
study adopts evaluation of the datasets based on model
propagation error (i.e. comparison of a simulation with the
control simulation). If the differences between the model’s
propagated error and the model error are small, then the bias
associated with the calibrated model parameter is minimal
and can be neglected. However, if the bias is markedly high,
then the model needs to be recalibrated with the dataset and
the period that is consistent with the test data period.
Table IV. Performance of hydrological models (aggregated across
watersheds) for calibration and validation period

SN Scheme NSE CE PI Period

1 Multimodel 0.706 0.836 0.819 Calibration
2 HYMOD 0.685 0.697 0.659
3 NAM 0.666 0.726 0.615
4 TANK 0.651 0.724 0.739
5 Multimodel 0.689 0.833 0.944 Validation
6 HYMOD 0.679 0.714 0.765
7 NAM 0.643 0.689 0.703
8 TANK 0.634 0.723 0.839

NSE, Nash–Sutcliffe efficiency; CE, count efficiency; PI, prediction interval
RESULTS AND DISCUSSION

Table IV summarizes the performances for the three models
and the multimodel mean. For the watershed used in this
study, the uncertainty in prediction associated with TANK
model is the highest among models. Similarly, for NAM
model, the uncertainty in the model is the lowest and the
reliability in prediction is the highest. For both calibration
and validation, combining the output from three models
resulted in wider prediction intervals (PI; ~23% increase
in PI) and consequently resulted in improved reliability
(~17% increase in reliability).
Figure 2 shows the median NSE, PI and count

efficiency (CE) for the selected watersheds and hydro-
logical model for both the calibration and the validation
periods. The CE is estimated as the percentage of
observation included within the PI, and the PI is estimated
Figure 2. Performances of the three hydrological models, namely HYMOD
Nash–Sutcliffe efficiency index (NSE) for calibration and validation period, (
within the prediction range for calibration and validation period, and (e and

streamflow for calibra

Copyright © 2013 John Wiley & Sons, Ltd.
as the average width of the PI. It is apparent from the
figure that the combination of output from different model
resulted in improvement in model performance and
reliability of model (measured as CE).
The average model performance (i.e. NSE) is nearly

72%, and the average VE is around 10% for both
calibration and validation (not shown). For watersheds
2236000 (FL) and 216500 (NC), the reliability of a 90%
PI in encapsulating the observation is far less than for the
other watersheds, indicating that the output is less
reliable. For calibration, the model is run several times,
testing with a large number (~20 000) of parameters that
are randomly generated from their range assuming that
their prior distribution follows uniform distribution. All
parameter sets that result in performance greater than 0.5
are considered behavioural parameter sets. The selection
of 0.5 for performance is made to accommodate the fact
, including multimodal mean during calibration and validation (a and b)
c and d) count efficiency, i.e. fraction of observations that are encapsulated
f) average width of the prediction range expressed as a fraction of average
tion and validation
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that the marginal increase in the threshold value does not
significantly decrease the reliability of the PI in
encapsulating the observations.
The uncertainty associated with prediction, mainly

arising from parameter and model selection, is on average
(across all 28 watersheds) nearly two thirds of the average
flow for both calibration and validation period. A
seasonal streamflow plot (1948–1968), for two water-
sheds, i.e. 3574500 and 2236000, showing ensemble
average and upper 95% and lower 5% stream flow for
each of the model and ensemble mean of the models is
shown in Figure 3. For each of the individual model, the
inability of the 90% PI to encapsulate 90% of observation
points reflects that parameter uncertainty alone is not
sufficient to explain the uncertainty in simulation. The
uncertainty grew with the size of the watershed, whereas
the relationship of uncertainty of model response to total
precipitation and the ratio of precipitation to evapotrans-
piration were not clear (not shown). For all chosen
watersheds (Figure 1), however, the uncertainty in
seasonal streamflow prediction shows the tendency to
decrease with an increase in latitude.
The seasonalflow and PI (shaded grey) estimated for both

the calibration and the validation periods for the selected
watersheds are shown in Figure 4. On the basis of model
performances, a set of behavioural model parameters for
each model and catchment is identified. Subsequently,
calibratedmodels are then forcedwith five different types of
datasets [i.e. global (OriR2 and OriERA); dynamically
downscaled (DSR2 and DSERA); and bias-corrected global
(BC_OriR2 and BC_OriERA); bias corrected dynamically
downscaled (BC_DSR2 and BC_DSERA); and synthetic-
ally generated data using WGEN]. For the synthetic data,
the parameters of WGEN are estimated using meteoro-
logical data (spatially average at watershed scale) from all
the selected watersheds spanning a 30-year period. The
WGEN is capable of generating large sets of statistically
consistent time series; therefore, 100 sets of precipitation
time series are generated, and the median hydrological
response is used for evaluation purpose.
Figure 3. The upper 95%, lower 5% and median value of simulated strea
multimodel, and two watersheds (a

Copyright © 2013 John Wiley & Sons, Ltd.
For comparing the different types of datasets, we used
nine indices from the statistical and regional dynamical
downscaling of extremes for European regions project. We
compare mean climatological precipitation (pav; mm/day),
90th percentile of rain day amounts (pq90; mm/day), the
greatest 5-day total rainfall (px5d), simple daily intensity
(pint), mean wet day/dry day persistence (ppww/ppdd), %
of total rainfall from events greater than long-term P90
(pfl90), number of events greater than long-term 90th
percentile of rain days (pnl90) and maximum number of
consecutive dry days (pxcdd)(Figure 5). Compared with
oriR2 and OriERA, some of the characteristics such as
average rainfall, 90th percentile rainfall, wet day persist-
ence, the greatest 5-day total, average intensity, 90th
percentile rain day amounts and number of events greater
than long-term are well reproduced by regionally down-
scaled data. The downscaled data however overestimated
the maximum number of consecutive dry days. With regard
to WGEN output, the average precipitation, wet day
intensity, 90th percentile rainfall amount, and wet and dry
day persistence are reproduced reasonably well for the
selected watersheds.WGEN, however, poorly simulated the
maximum number of consecutive dry days (not shown).
Figure 6 shows the seasonal rainfall and corresponding

flow simulated with different model forcing datasets (over
six watersheds of SEUS). For all watersheds except those
in Florida, the precipitation from R2 is associated with a
stronger seasonal cycle and with overestimation during
summer and underestimation during winter. However, the
bias associated with ERA is less than the bias associated
with R2. Bias in simulated flow is reduced for DSR2 and
DSERA as precipitation associated with smaller scale
phenomena are accounted for in the high-resolution
dynamically downscaled regional reanalysis data. The
statistical bias correction applied to dynamically down-
scaled regional reanalysis results in significant improve-
ment (see upper panel in Figure 6). Moreover, the
seasonal cycle of (both dynamically and statistically)
bias-corrected rainfall is in closer agreement with the
observation than OriR2 and OriERA. At watershed scale,
mflow (1948–1968) for four schemes, i.e. HYMOD, NAM, TANK and
–d) 3574500 and (e–h) 2236000
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Figure 4. Observed and simulated seasonal streamflow and prediction uncertainties (shaded grey) for the 28 selected watersheds in the southeastern
United States during model calibration and validation

EVALUATION OF PRECIPITATION DATA FOR HYDROLOGICAL APPLICATION
the downscaling does reduce the bias in precipitation, a
primary input of hydrological model.
In addition to the qualitative assessment, quantitative

comparisons based on the NSE and overall VE is made on
flows simulated with a suite of hydrological models. The
best-performing dataset is the one that results in
simulations that are closer to the observed streamflow
(or the flow simulated with observed forcing), i.e. near the
ideal performance point (NSE = 1 and VE= 0).
As shown in Table V, which shows the aggregate

performances of different datasets in simulating the
streamflow measured with respect to observation and
control simulation, on average OriR2 overestimates the
Copyright © 2013 John Wiley & Sons, Ltd.
flow, whereas OriERA underestimates the flow (measured
in terms of VE). Compared with the bias in OriERA and
OriR2, the VE in response toWGEN forcing is significantly
smaller and is comparable with the bias in dynamically
downscaled data. However, in general, compared with
WGEN, dynamically downscaled data result in more
realistic hydrologic simulation. The performance improves
with the use of the downscaled reanalysis dataset, both in
terms of NSE and VE. Statistical bias correction results in
further improvement in performance of the dynamically
downscaled reanalysis data.
Figure 7(a, b) (Figure (7c, d)) shows the comparison,

for each of the watershed, with respect to observed flow
Hydrol. Process. (2013)
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Figure 5. Comparison of the reanalysis, dynamically downscaled reanalysis and observed daily rainfall using indices from the statistical and regional
dynamical downscaling of extremes for European regions project: mean climatological precipitation (pav; mm/day), 90th percentile of rain day amounts
(pq90; mm/day), the greatest 5-day total rainfall (px5d), simple daily intensity (pint), mean wet day/dry day persistence (ppww/ppdd), % of total rainfall
from events greater than long-term P90 (pfl90), number of events greater than long-term 90th percentile of rain days (pnl90) and maximum number of

consecutive dry days (pxcdd)

S. BASTOLA AND V. MISRA
(flow simulated with observed forcing). It is apparent
from Figure 7(a, c) that the points in performance space
are much more scattered and farther away from ideal
points for OriR2 (can also be seen from Table V). The
flow simulated with OriR2 overestimates the control
flow. Apart from the seasonal average value, the OriR2
tends to overestimate (underestimate) heavy (light)
rainfall event (Stefanova et al., 2012a). On the other
hand, the performance of OriERA for all 28 watersheds
are similar but with systematic underestimation of the
flow in all the selected watersheds. The underestimation
of the flow can also be attributed to the fact that, over
our study region, OriERA tends to overestimate
(underestimate) the frequency of light (heavy) rainfall
(Stefanova et al., 2012a). Furthermore, Figure 7(b, d)
shows improvement in performance, as points move
closer towards the ideal point (i.e. 1.0), with bias
correction. For comparing dynamically downscaled
regional reanalysis data with data extracted from
synthetically generated dataset, i.e. WGEN, we used
monthly output instead of daily output.
The result based on monthly simulated flow (Table V)

reflects that the NSE improved when model performance
is evaluated on the basis of monthly aggregated result
instead of daily. In average, the downscaled and bias-
corrected global reanalysis data clearly out formed other
dataset at when model performance is evaluated on the
basis of daily simulated flow.
Figure 8(a, b) shows the performance based on monthly

aggregated simulated flow, for the entire selected
watershed, of the statistically downscaled and dynamic-
ally downscaled regional reanalysis dataset derived on the
Copyright © 2013 John Wiley & Sons, Ltd.
basis of R2 and ERA, respectively. It is apparent from the
figure that WGEN performed better than OriR2 and
OriERA (Table V). But the points for DSR2_BC and
DSERA_BC are closer to the ideal point compared with
WGEN [the average NSE for DSR2_BC and DSERA_BC
is greater than WGEN (Table V)]. In comparison with
OriR2 and OriERA, the performance of WGEN is better
for hydrological simulation in the SEUS. Moreover, the
performance of bias-corrected, dynamically downscaled
regional reanalysis data is superior to the performance of
bias-corrected global reanalysis data, dynamically down-
scaled regional reanalysis data without bias correction and
synthetically generated data.
The watersheds selected for this study (Table I) vary in

size and other characteristics. Therefore, the VE and
performance of simulation corresponding to each of the
test input vary from watershed to watershed. The bubble
plot (Figure 9) shows the spatial distribution of a value of
VE and NSE for the 28 watersheds for ERA-40 (a and b)
and NCEP-R2 (c and d). The performance is measured
with respect to flow simulated with observed model
forcing. For VE, the smaller the size of the bubble, the
better the simulation, and for NSE, the larger the size of
the bubble, the better the simulation. For the five
watersheds located within Florida, bias-corrected
regionally downscaled reanalysis data perform better
than the global reanalysis and corresponding regionally
downscaled reanalysis. For watersheds located within
North Carolina, ERA-40 performs better than NCEP-R2.
In these watersheds, the bias correction shows marked
improvement in model simulation.
Hydrol. Process. (2013)
DOI: 10.1002/hyp



Figure 6. Seasonal aerial average precipitation for the selected watersheds derived from different test precipitation datasets: global reanalysis (OriR2 and
OriERA), dynamically downscaled reanalysis (DSR2 and DSERA), bias-corrected, dynamically downscaled reanalysis (BC_DSR2 and BC_DSERA)

and synthetically generated (WGEN) and corresponding simulated streamflow

EVALUATION OF PRECIPITATION DATA FOR HYDROLOGICAL APPLICATION
CONCLUSION

In this study, precipitation data derived from regional
(downscaled) reanalysis are evaluated for their skill in
Copyright © 2013 John Wiley & Sons, Ltd.
driving a hydrological model of the SEUS. The water-
sheds analyzed in this study were selected because of
their relatively minimal anthropogenic influence on
streamflow regulation in the SEUS. This study shows
Hydrol. Process. (2013)
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Figure 7. Performance of original and downscaled precipitation datasets in terms of model error, i.e. measured with respect to observed quantity (a and
b) and model propagated error (c and d), i.e. measured with respect to the quantity simulated with control model forcing

Figure 8. Performance of original and downscaled precipitation datasets in terms of model propagated error, i.e. measured with respect to quantity
simulated with control model forcing. Observed quantity: (a) variants of R2 and WGEN and (b) variants of ERA and WGEN

Table V. summary of model’s performance

SN
Precipitation

dataset

Based on daily simulated flow Based on monthly simulated flow

Model error Model propagated error Model propagated error

NSE VE NSE VE NSE VE

1 OriR2 �0.927 0.185 �1.138 0.252 �1.952 0.252
2 OriERA �0.092 �0.599 0.056 �0.563 �0.142 �0.563
3 DSR2 �0.021 �0.120 �0.004 �0.060 �1.293 �0.060
4 DSERA �0.341 0.077 �0.578 0.160 �1.085 0.160
5 OriR2_BC 0.025 �0.040 0.190 0.030 0.246 0.030
6 OriERA_BC �0.139 �0.047 �0.035 0.016 0.045 0.016
7 DSR2_BC 0.166 �0.241 0.393 �0.189 0.423 �0.189
8 DSERA_BC 0.138 �0.182 0.339 �0.123 0.477 �0.123
9 WGEN �0.108 �0.160 �0.610 0.060 �0.185 0.060

S. BASTOLA AND V. MISRA
that the global reanalysis of ERA40 tends to underesti-
mate streamflow, whereas NCEP-R2 tends to overesti-
mate it in these SEUS watersheds. We further show that
forcing data for the RR models derived from the bias
correction following the methodology of Wood et al.
(2002) on the surface meteorology of these global
reanalysis seem to outperform the corresponding region-
Copyright © 2013 John Wiley & Sons, Ltd.
ally downscaled reanalysis product. Our work, however,
showed that the regionally downscaled reanalysis without
any bias correction did far better than the corresponding
global reanalysis. Furthermore, this study also shows that
the regional dynamically downscaled data with bias
correction produced more realistic hydrologic simulation
than synthetically generated data using WGEN. For
Hydrol. Process. (2013)
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Figure 9. Bubble plot showing the value of Nash–Sutcliffe efficiency index (NSE) (a and c) and volume error (b and d) measured with respect to control
simulation (i.e., model propagation error)

EVALUATION OF PRECIPITATION DATA FOR HYDROLOGICAL APPLICATION
hydrological simulation, bias-corrected dynamically
downscaled data from global reanalysis are superior to
global reanalysis, bias-corrected global reanalysis, and
dynamically downscaled global reanalysis without bias
correction. From our comprehensive analysis of using
multiple sources of meteorological forcing, deploying
multiple hydrological models over several (28)
watersheds, we conclude that for hydrological model
application studies over the SEUS, there is merit in
dynamically downscaling coarser global reanalysis.
Even though the weather generator resulted in better

reproduction of seasonal cycle of precipitation and conse-
quently of streamflow, the model performance evaluated at a
daily time scale is as poor as that of the global reanalysis
without bias correction. Such a significant loss in perform-
ance of hydrological model with the use of precipitation
products other than used for model calibration implies that
application that requires the use of output from GCM, e.g.
hydrologic impact of climate change, should consider
focusing on the seasonal to annual response from watershed
instead of attempting to simulate the dynamics of riverflow at
a daily time step.
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