

Demand forecast at Tampa Bay Water and how it is being used for long-term supply planning

Agency' Mission

Tampa Bay Water reliably provides clean, safe water to the region now and for future generations

What drives long-range demand forecast?

- Master water supply contract:
 - States the agency has unequivocal obligation to supply water

If demand exceed permitted capacity by 75% during any twelve month period, initiate a preparation of permit applications for new supply projects;

If demand exceed permitted capacity by 85% during any twelve month period, file permit application; and

If actual delivery during any 12-month period exceeds 94% of aggregated permitted capacity, it is considered a production failure

"Forecasting is the art of saying what will happen, and then explaining it why it didn't"

-Anonymous

Forecasting Methodology

Sector Water Use (Q)

Х

Average Rate of Use (q = unit use)

- per household
- per employee

- Number of Users (N = drivers)
 - housing units
 - employment

Disaggregated Framework

- <u>Rate of use</u> reflects monthly average gal/unit/day for each
 - Sector
 - Month/Year
 - Geographic unit
- Total use for each sector, month/year, geographic unit reflects:
 - Average rate of use per unit
 - Number of units

TAZ Geographical Modeling Unit

- TAZ geographies
 - Defined: Florida
 Dept. of
 Transportation
 (FDOT)
 - 1800 across region
 - Growth projections available
- TAZ maps to WDPA

Modeling Approach uses TAZ as Modeling Unit

- Observations for water use aggregated/averaged to the Traffic Analysis Zone (TAZ) level
 - Provides large number of geographic cross-sections
 - Rich source for estimating model parameters
- Socioeconomic variables collected at TAZ level
 - Income
 - Housing density
 - Persons per household
 - Housing units
 - Employment and distribution of employment

Other modeling data assigned to TAZ

- Weather variables
 - Data collected from multiple weather reporting stations
 - TAZ-level values derived through distanceweighting
- Data collected from or derived from member data
 - Price of water
 - Fraction of accounts with access to reclaimed water

Model Variables/Drivers: Relative Effects on Demand Forecast

VARIABLES/DRIVERS	EFFECT
Housing units (SF&MF)	+++
Total Employment (NR)	++
Fraction of Employment by Major Employment Sector	+
Median household income (SF, MF, NR)	++
Housing density (SF&MF)	- /
Persons per household (SF)	+
Marginal price (SF)	
Temperature departure (SF)	+
Rainfall departure (SF&NR)	-
Rainfall (MF)	-
Number of Rainy Days (SF)	-
Fraction of reclaimed accounts (SF&MF)	-

Probabilistic Demand Forecast

- For a given demand slice, e.g., 2030
 - A range of socioeconomic factors were used
 - Longterm rainfall and temperature values used

Schematic of Operational Model

Use of long-range forecast

9				
в		\searrow		
,				Policy Level o Service D
5				Policy Level o Service C
-				Policy Level o Service B
-				Policy Level o Service A
-				

A) Results of Additional Supplies by 2025 Compared Against Existing System							
Policy							
Level	Existing Supply	5 MGD	10 MGD	15 MGD	20 MGD		
	Reliability	Reliability	Reliabiliy	Reliability	Reliability		
Α	42%	54%	65%	72%	79%		
В	82%	89%	94%	95%	96%		
С	93%	95%	97%	99%	99%		
D	96%	98%	99%	99%	99%		
B) Results of Additional Supplies by 2030 Compared Against Existing							
System							
Policy							

Level	Existing Supply	5 MGD	10 MGD	15 MGD	20 MGD
	Reliability	Reliability	Reliabiliy	Reliability	Reliability
Α	30%	40%	48%	56%	65%
В	68%	75%	81%	88%	91%
С	81%	87%	90%	93%	95%
D	87%	91%	94%	95%	98%

C) Results of Additional Supplies by 2035 Compared Against Existing System

Policy					
Level	Existing Supply	5 MGD	10 MGD	15 MGD	20 MGD
	Reliability	Reliability	Reliabiliy	Reliability	Reliability
Α	25%	33%	38%	45%	53%
В	54%	61%	70%	78%	81%
С	67%	78%	80%	86%	88%
D	76%	81%	85%	90%	93%