

The Peace River Manasota Regional Water Supply Authority

- Created in 1982
- 4 Member Counties
- Serves a population of about 500,000

Drainage Basin & the Peace River Facility

 Location of Peace River Facility

The Peace River Facility

The Peace River is our Source Water

120 MGD River Intake Pump Station

How Much is 120 MGD?

Enough to Fill Raymond James Stadium to the Upper Deck Every Day

6 BG in Underground Storage 21 Finished Water ASR Wells

ASR Well System

During Months without ASR Recovery

During Months with ASR Recovery

Picture from FDEP's "Florida's Water" webpage

The Upper Peace River can go Completely Dry

Picture by Sam Stone during 2000-1 drought

The Peace River near Arcadia - typical dry and wet season views

River flows vary dramatically (8 Mgd – 18 Bgd)

Although more than 25 miles from the Gulf of Mexico, our river intake is tidally influenced

How Much is 3 millimeters a Year?

- Take 2 pennies and stack them on top of each other = 3 mm
- This is 1.2 inches in 10 years
- This is 1 foot in 100 years
- Some Suggest that due to the Anthropogenic Linkage, this Rate is Accelerating

The Peace River Facility

2010-2013 USGS top/bottom continuous (15-minute) recorder data at the **Facility's** intake

Data Used in Statistical Model Development

Model domain = hourly averaged data when upstream flow was >80 and < 500 cfs & 30-day preceding flow < 500 cfs

Salinity = β_{α} + ($\beta_1 x Flow1$) + ($\beta_2 \times Flow2$) + ($\beta_3 xStage$) + ($\beta_4 x(Stage / Flow)$) where:

- β_{α} = specific intercept
- β_1 = "short-term" flow slopes (linear and/or non-linear)
- β_2 = "long-term" flow slopes (linear and/or non-linear)
- β_3 = gage height specific slope
- β_4 = gage height/flow interaction specific slope

Limited number of parameters to nonautocorrelated accounting for 1% variation

• Model R² = 0.61

Parameter	Estimate	Standard Error	t Value	Pr > t	
Intercept	27833.30249	248.2545839	112.12	<.0001	
GHEIGHT	204.44555	19.0693389	10.72	<.0001	
F5	20.77362	0.4809903	43.19	<.0001	
LF52	-1615.49370	35.3412817	-45.71	<.0001	
F53	-0.00003	0.0000007	-40.77	<.0001	
F30	15.21454	0.2983358	51.00	<.0001	
LF302	-1634.36143	26.4809404	-61.72	<.0001	
FGH	-0.52691	0.1023138	-5.15	<.0001	

Probability (%)	2025		2050		2075	
	ст	inches	ст	inches	ст	inches
90% (best case)	7	2.8	13	5.0	20	7.7
50% (median expected)	13	5.1	24	9.4	37	14.4
5% (worst case)	22	8.7	41	16.1	63	24.6
Projected potential probabilities of future increases in near future sea-level rise along southwest Florida coast (IPCC))						

- Future sea-level changes applied in the statistically based modeling used USEPA estimates estimating the probability of occurrence
- Provided potential range of sea-level change at three future 25-year intervals

6 Scenarios Selected

Scenario	Sea Level Rise (inches)		
baseline	0		
1	2.8		
2	5.0		
3	7.7		
4	14.4		
5	24.6		

Predicted statistical distribution of conductivity at the Facility intake under each future sea-level rise alternative (using available 2010-2013 flow and stage data)

Formulating Future SLR Scenario Curves for River/TDS Relationship

- Use SAS model to project median TDS for scenario at 300 cfs river flow
- Mimic proportional TDS expansion and compression ratios taken from baseline data for 100 and 500 CFS limits, respectively
- Set high flow convergence to good quality water, i.e. 15,000 cfs = 100 mg/L TDS
- Fit polynomial expression to the datum

System Reliability Modeling Starts by Defining **Fundamental** Solvent & **Solute Mass Balance Relationships** (Solute in this case is TDS)

- Solving for Day Ending reservoir and ASR volumes is straightforward
- Solving for Day-Ending TDS concentrations is more rigorous (examples below)

System Reliability Model

- PRO-PAT Model (Peace River Operability Platform Assessment Tool)
- Excel-based decision tool
- 6 embedded SLR scenarios
- Model has 109 Variables
 - 49 operational variables
 - 60 climate associated variables
 - Can apply a monthly multiplier for rainfall
 - Can change monthly multiplier for evaporation
 - Can apply a monthly flow multiplier for 3 streams

Reliability Measures

Quantity Reliability

(# days met full demands)

(total days)

Quality Reliability

(# days met full demands with TDS < 500 mg/L)

(total days)

Summary

- Decisions Made Today Must be Considered in View of What is Likely in 50 – 100 years
- Strategic Planning Must Consider Adaptation
 Management Strategies
- Guidelines can only speak to process generalities

 Utilities must employ creativity in customizing
 Adaptive Management Decision Tools and
 Strategies for their own reality
- Don't be afraid to borrow approaches from others, we are all in this together!
- Likewise, share approaches you have developed with others!

Acknowledgements

- Ralph Montgomery Atkins
- Mike Coates, PG PRMRWSA
- Mike Heyl/SWFWMD
- Others
 - Sam Stone PRMRWSA
 - Mark McNeal, PG ASRUS Inc.
 - Pete Larkin, PG CH2M HILL
 - Ryan Messer, PE CH2M HILL
 - Florida Water and Climate Alliance