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Background

Pressing issues:
• Biodiversity loss, anthropogenic disturbances, climate 

change etc…
• Increasing pressures on ecosystem service provisioning

• Remote sensing an important tool historically
• Allows regional assessments extrapolations from field-

based studies
• Synoptic, repeatable measurements

• Continuing need for new tools and techniques for the 
most pressing issues



Optical remote sensing: tradeoffs in scale/resolution

Hyperspectral contact: 
Leaf/plant scale
Leaf biochemistry, function
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Hyperspectral  UAS, mobile: 
Plot, canopy
Plant, canopy biochemistry, function
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Hyperspectral airborne: 
Landscape, field, plot scale
Composition, biochemistry, function, disturbance
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Multispectral space-borne: 
Landscape scale
Composition, disturbance, phenology …
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Contact spectroscopy
• Deriving foliar biochemical and 

morphological traits

Imaging spectroscopy
• Mapping foliar biochemical, morphological 

and metabolic  traits and their uncertainties.

Methodological developments in 
satellite remote sensing

• Landscape-scale nutrient cycling, crop 
production

Filling gaps, ongoing research
• Desktop spectroscopy, mobile and 

airborne remote sensing platforms

Organization
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Landscape dynamics, satellite imagery, and water quality

Predict baseflow water quality (NO3-N,SRP), one year in advance

• Get data from previous studies, 315 watersheds in Wisconsin

• Obtain MODIS data, derive vegetation indices, organize by seasons

• Build PLSR models

• Predict across the entire state



Results: Nitrate-N

mg/L



Advancing to continuous-time models: The Chesapeake Bay

Issues: hypoxia, loss 
of loss of aquatic 
vegetation…

Forest ~60%



Study area: Chesapeake Bay watershed

10 Years, 9 Watersheds, Monthly 
Nitrate-N loads

Determine:
• what influences water quality 

and where?
• when are those influences 

most strong?



• Functional models:

– Relate observations to functions of (…classically, time-varying) predictors:

– OLS: FLM:

– Flexible: responses can also be functions (FL concurrent models). 

– ‘Concurrent’: responses at time ‘t’ are functions of predictors at the same 

time.

– Interpretation simple

• similar to OLS models

– Beta coefficients are also functional → Structurally down-scalable.

Method: Functional Linear Models (FLMs)
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Spatial variables:

Total Atm. N deposition (NADP) Precipitation (PRISM) Disturbance, NDVI (MODIS)

Landcover (NLCD 2006) Watershed characteristics

• Landcover
• Ws characteristics
• N. Deposition
• Precipitation
• NDVI
• Disturbance
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Spring 
uptake 

Summer 
flushing

Summer 
flushing

Shorter 
flowpath

In-stream 
processing

Forest 
functional type 

Direct inputs

Intercept

Results:



Model matches both intra- and inter-annual variations well

Results:

Observed            Predicted

Also see: Eshleman et al. 2013 (ES&T)



Results: Pixel-wise / watershed averaged predictions:



Contact spectroscopy
• Deriving foliar biochemical and 

morphological traits

Imaging spectroscopy
• Mapping foliar biochemical, morphological 

and metabolic  traits and their uncertainties.

Methodological developments in 
satellite remote sensing

• Landscape-scale nutrient cycling, crop 
production

Filling gaps, ongoing research
• Desktop spectroscopy, mobile and 

airborne remote sensing platforms

Optical remote sensing: Issues of scale and resolution



Optical remote sensing: Issues of spectral resolution

O2B        O2A H2O

Solar spectral irradiance at sea level



Optical remote sensing: Issues of spectral resolution

MODIS Terra, Landsat 7Spectral sampling: Multispectral sensors



Optical remote sensing: Issues of spectral resolution

AVIRIS-CSpectral sampling: Hyperspectral sensors



Spectroscopy
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Biologically important absorption features
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Foliar biochemistry from spectroscopy



Methods Image 
level

Leaf 
level

Analysis &
prediction
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Foliar traits from imaging spectroscopy

Partial least squares regression
• Chemometric method designed to handle high-dimensional, multicollinear data
• 50/50 Jackknife to get model uncertainties

LMA



PLSR model results, 25/75 Cal/Val, 500× randomized Jackknife, 237 plots
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Foliar traits from imaging spectroscopy

Singh et al. (2015) Ecological Applications



Results

Savage River 
State Forest 
MD

Trait maps

Trait TraitUncertainty Uncertainty



Emergent 
patterns

R:G:B = N:Lignin:LMA NLCD 2011

N% mean N% uncertainty

2007
2009

2007



Contact spectroscopy
• Deriving foliar biochemical and 

morphological traits

Imaging spectroscopy
• Mapping foliar biochemical, morphological 

and metabolic  traits and their uncertainties.

Methodological developments in 
satellite remote sensing

• Landscape-scale nutrient cycling, crop 
production

Filling gaps, ongoing research
• Desktop spectroscopy, mobile and 

airborne remote sensing platforms

What can we use maps of foliar biochemistry for?



Water quality as a function of foliar traits

Latent variable Manifest variable Source

Foliar retention↓
C : N AVIRIS

Lignin : N AVIRIS

Wetland retention ↓
TC Wetness index MODIS

% Water NLCD

Runoff from 

ag/pasture↑

% Agriculture NLCD

% Pasture NLCD

External inputs ↑
Foliar N % AVIRIS

Atm. Nitrogen dep. N. Dep

Water quality
log(NO3-N) Field

• 250 Watersheds across Wisconsin
• NO3-N , SRP
• Data from MODIS, AVIRIS, NLCD



Retention due to foliar recalcitrance

Retention in 
wetlands

Runoff from

agricultural land and pastures Fertilizer*, Atm. Dep

Foliar 
Retention

Wetland 
retention

Runoff External 
inputs

Water 
Quality

Method: Proposed PLS-path model



31

Results: Fitted path model

Foliar 
Retention

Wetland 
retention

Runoff External 
inputs

Water 
Quality

0.020ns

-0.270***

Retention due to foliar recalcitrance

Retention in 
wetlands

Runoff from

agricultural land and pastures Fertilizer*, Atm. Dep
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Path model: Mapping the ‘foliar recalcitrance’ latent variable



→ Significant differences between mechanisms

Path model: Results, Comparing forests and agriculture



Contact spectroscopy
• Deriving foliar biochemical and 

morphological traits

Imaging spectroscopy
• Mapping foliar biochemical, morphological 

and metabolic  traits and their uncertainties.

Methodological developments in 
satellite remote sensing

• Landscape-scale nutrient cycling, crop 
production

Filling gaps, ongoing research
• Desktop spectroscopy, mobile and 

airborne remote sensing platforms

Ongoing and future research



Research in progress: UAS spectroscopy

• Parallel system being built at UF
• Headwall Photonics NanoHyperspec (400-1000nm) imaging spectrometer, Thermal
• Will be used to estimate ET at the canopy scale



● Remote sensing and spectroscopy powerful tools for assessing 
ecological responses to stress, at multiple scales.

● Combined with coordinated field surveys and analysis 
techniques, can help answer basic and applied questions in 
ecosystem sciences.

● In combination with process-based models, spatial estimates of 
ecosystem attributes can help inform responses to environmental 
change.

● Field-scale instrumentation and UASs can enable better 
characterization of entire ecosystems across space and time.

Conclusion
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