

Overview of evapotranspiration studies in the USGS Caribbean-Florida Water Science Center

John Stamm

U.S. Geological Survey Caribbean-Florida Water Science Center

U.S. Department of the Interior U.S. Geological Survey

Outline

Contributing researchers
Climate setting for Florida
USGS ET stations
Gridded ET products

applications

MODIS actual ET
Future work

Contributing researchers

USGS

- David Sumner, Ph.D., Associate Director for Studies, CFWSC
- Barclay Shoemaker, Ph.D., Research Hydrologist, CFWSC
- Michael Wacker, Hydrologist, CFWSC

Academia

- John Mecikalski, Associate Professor, University of Alabama in Huntsville
- Johnna Infanti, Ph.D., University of Miami, University Cooperation for Atmospheric Research (UCAR) Cooperative Programs for the Advancement of Earth System Science, Postdoctoral Researcher
- Gabriel Senay, Ph.D., USGS Earth Resource Observation and Science (EROS) Center and Colorado State University

Climate setting for Florida

Historical climate: 1961–2016
Projected climate to 2099

Historical climate

- Parameter-elevation Regressions on Independent Slopes Model
 - Oregon State University
 - Interpolates weather station data to a gridded dataset
 - conterminous United States
 - monthly mean of daily T_{min} and T_{max}
 - monthly P
 - 1895—present
 - 2.5 minute resolution (~4.0x4.5 km in Florida)

Water year

Projected climate

Community Climate System Model

- National Center for Atmospheric Research (NCAR), Boulder, CO
- CCSM3: 1.4^o lon and lat resolution (~140 by 155 km in Florida)
 - A2 emission scenario
- CCSM4: 1.25^o lon by 0.9^o lat resolution (~125 by 100 km in Florida)
 - RCP8.5 emission scenario

Water year

CES Home / USGS / Downscaling-2.0 / CES - Downscaling

USGS-FAU Workshop on Increasing

Evapotranspiration is an important variable for validation of climate models, and for selection of "best" climate models for Florida

studies.

CONFERENCES & MEETINGS HOME

RECOMMENDATIONS

PREDICTING ECOLOGICAL CHANGES

EVERGLADES HYDROLOGY

LVENULADES

For more information, contact Mary Beth Hartman, CES Conference & Outreach Coordinator Phone:(954) 236-1203 Email: mhartman@fau.edu

TOPIC

Improving confidence in precipitation projections for Everglades restoration.

MOTIVATION:

The uncertainty of climate projections is a significant barrier to the implementation of restoration and adaptive management programs. Our objective is to improve the utility of precipitation projections for South Florida water management and Everglades restoration efforts, particularly related to the time scales and time periods of interest, spatial scales of interest, parameters of interest, and characterization of uncertainty for 3 focal areas or domains.

USGS ET Stations

Barclay Shoemaker, Michael Wacker, David Sumner
Variety of land types and water settings

Starkey Park, meadow, near Tampa

Dead River, forested wetland, near Tampa

USGS CFWSC ET Network- Past & Present

https://sofia.usgs.gov/exchange/evapotrans/

South Florida Information Access - Data Exchange

Gridded RET and PET products

- Barclay Shoemaker, John Mecikalski
- Reference and Potential Evapotranspiration:
 - 2 kilometer resolution for Florida
 - Identical to NEXRAD gridded precipitation dataset
 - daily
 - Geostationary Operational Environmental Satellite (GOES) estimates of solar insolation
 - Atmospheric variables interpolated from weather station data

2015 Statewide GOES ET maps

http://fl.water.usgs.gov/et/

Evapotranspiration Information and Data

The U.S. Geological Survey Florida Evapotranspiration Network is a network of 15 data collection sites representing various land cover types, which provide long-term, accurate, and unbiased information that meets the needs of many diverse users. The USGS collects the evapotranspiration data needed by Federal, State, and local agencies for planning and operating water-resources projects and regulatory programs.

The links below allow you to find information and data about Florida's evapotranspiration resources.

Evapotranspiration Data

Data Collection Sites

The map shows current and past evapotranspiration data collection sites in Florida; click the map to go to a full size version with links to NWISWeb data.

Information Resources

Evapotranspiration Publications

- USGS Evapotranspiration Publications for Florida
- Technical Report: Satellite-based Evapotranspiration Estimates Over Florida
- InTechWeb Report: Use of Visible Geostationary Operational Meteorological Satellite Imagery in Mapping Reference and Potential Evapotranspiration over Florida

Other USGS Evapotranspiration Resources

USGS Nevada Water Science Center - Evapotranspiration Studies

Statewide Evapotranspiration Data - (2km Daily)

ET Data County and State 1985-2016

- <u>1985</u> <u>1986</u> <u>1987</u> <u>1988</u> <u>1989</u>
- <u>1990</u> <u>1991</u> <u>1992</u> <u>1993</u> <u>1994</u>
- 1995 1996 1997 1998 1999
- 2000 2001 2002 2003 2004
- 2005 2006 2007 2008 2009
- 2010 2011 2012 2013 2014
- 2015 2016

Need More Information?

Contact the Florida Evapotranspiration Specialists

3,283,216 Pasco 2016 The above files are compressed, tab-delimited tables of numeric data that are generally software independent. Tab-delimited data can be imported into a variety of GIS, database or spreadsheet software packages.

Each compressed County archive file contains one data file having tab delimited columns of data, which include the following fields:

4,040,008 PalmBeach 2016 14,322,146 Washington 2016

5,006,794 Florida 2016

4,097,488

376,950,271

Column Definition

Duval 2016

1 Date of data representation (Year Month Day as yyymmdd)

5,627,581 Jefferson 2016

Escambia 2016 4,435,212 Lafayette 2016

- 2 Latitude of Pixel value (Decimal degrees)
- 3 Longitude of Pixel value (Decimal degrees)
- 4 Pixel ID number
- 5 Potential ET(mm/day)
- 6 Reference ET(mm/day)
- Solar Radiation Daily Insolation (MegaJoules/sq meter/day) 7
- 8 Maximum Relative Humidity for day (%)
- Minimum Relative Humidity for day (%) 9
- Maximum Temperature for day (C) 10
- 11 Minimum Temperature for day (C)
- Wind Speed (meters/second) 12

Notes concerning the current data sets:

Missing values are represented by the number -9999.900.

Daily data quality codes for January 1 through December 31

Daily Quality Codes	Size	
Quality Codes 2016	905	

Each compressed Daily Quality Code file contains one data file having tab delimited columns of data, which include the following fields:

Definition Column

- Date (Year Month Day as yyyymmdd)) 1
- Quality Code (A value of 1, 2, 3, or 4) 2 Based on the quality of Solar data for that day
 - (1 = Good quality, 2 = Usable data, 3 = Uncertain or unverifiable quality, 4 = Unusable or missing)

Information regarding the methodology used in the ET computations are detailed in the InTechWeb Report: Use of Visible Geostationary Operational Meteorological Satellite Imagery in Mapping Reference and Potential Evapotranspiration over Florida

Metadata file describing this year's GOES ET process (XML format): GOES ET metadata 2016

Statewide Evapotranspiration Data - (2km Daily)

File	Size	File	Size	File	Size	File	Size
<u>Alachua 2016</u>	6,412,654	Flagler 2016	3,095,175	Lake 2016	7,680,098	Pinellas 2016	1,699,415
<u>Baker 2016</u>	4,067,558	Franklin 2016	3,453,638	Lee 2016	5,296,903	Polk 2016	13,176,262
<u>Bay 2016</u>	4,884,410	Gadsden 2016	3,250,057	Leon 2016	4,781,970	Putnam 2016	5,581,810
Bradford 2016	1,904,923	Gilchrist 2016	2,119,279	Levy 2016	7,213,457	SantaRosa 2016	6,660,772
Brevard 2016	6,739,281	Glades 2016	6,585,205	Liberty 2016	5,782,353	Sarasota 2016	3,744,114
Broward 2016	8,119,784	<u>Gulf 2016</u>	3,811,593	Madison 2016	4,652,583	Seminole 2016	2,138,572
Calhoun 2016	3,745,912	Hamilton 2016	3,159,156	Manatee 2016	5,137,157	StJohns 2016	4,269,590
Charlotte 2016	4,579,016	Hardee 2016	4,290,226	Marion 2016	10,940,972	StLucie 2016	4,045,293
Citrus 2016	4,072,675	Hendry 2016	8,068,759	Martin 2016	4,522,732	Sumter 2016	3,996,311
<u>Clay 2016</u>	4,220,191	Hernando 2016	2,960,137	Monroe 2016	6,500,986	Suwannee 2016	4,737,152
Collier 2016	13,295,931	Highlands 2016	7,724,319	Nassau 2016	4,278,366	Taylor 2016	6,872,260
Columbia 2016	5,041,943	Hillsborough 2016	7,028,943	<u>Okaloosa 2016</u>	6,237,374	<u>Union 2016</u>	1,512,231
Dade 2016	13,269,070	Holmes 2016	3,039,802	Okeechobee 2016	6,017,924	<u>Volusia 2016</u>	8,200,274
<u>DeSoto 2016</u>	4,243,340	IndianRiver 2016	3,094,198	Orange 2016	6,607,163	<u>Wakulla 2016</u>	4,093,822
<u>Dixie 2016</u>	4,600,821	Jackson 2016	6,180,173	Osceola 2016	10,313,256	Walton 2016	6,811,257
Duval 2016	5,627,581	Jefferson 2016	4,040,008	PalmBeach 2016	14,322,146	Washington 2016	4,097,488
Escambia 2016	4,435,212	Lafayette 2016	3,283,216	Pasco 2016	5,006,794	Florida 2016	376,950,271

12 Wind Speed (meters/second)

Notes concerning the current data sets: Missing values are represented by the number -9999.900.

Daily data quality codes for January 1 through December 31

Based on the quality of Solar data for that day

Daily Quality Codes	Size	
Quality Codes 2016	905	

Each compressed Daily Quality Code file contains one data file having tab delimited columns of data, which include the following fields:

Column Definition

- 1 Date (Year Month Day as yyyymmdd)) 2 Quality Code (A value of 1, 2, 3, or 4)
- **≥USGS**

Information regarding the methodology used in the ET computations are detailed in the InTechWeb Report:								
Use of Visible Geostationary Operational Meteorological Satellite Imagery in Mapping Reference and Potential Evapotranspiration	over Florida							

(1 = Good quality, 2 = Usable data, 3 = Uncertain or unverifiable quality, 4 = Unusable or missing)

Metadata file describing this year's GOES ET process (XML format): GOES ET metadata 2016

Current research / improvements

- Estimates of albedo using MODIS data
- Interpolation of atmospheric variables using radial basis function
 - distance-squared interpolation currently used
 - RBF increases weights of distant points when computing weights for interpolation
- Atmospheric data from the North American Regional Reanalysis
- Atmospheric data from the Weather Research and Forecasting Model

North American Regional Reanalysis

- 32 km spatial resolution
- 3 hour time step
- Full suite of atmospheric variables

Weather Research and Forecasting Model

- 2 km spatial resolution
- 1 hour time step
- Grid overlaps with PET, RET, NEXRAD grids
- Full suite of atmospheric variables

WRF simulation at 2-km grid spacing for Florida

Maximum Relative Humidity March 10, 2016

2000-10-01

Research applications of ET data

- Calibration of simple estimators of evapotranspiration
- Water budget for Tsala Apopka system of lakes

2950 Niles Road, St. Joseph, MI 49085-9659, USA 269.429.0300 fax 269.429.3852 hg@asabe.org www.asabe.org An ASABE Meeting Presentation DOI: 10.13031/aim.201700912 Paper Number: 1700912

Use of eddy-covariance methods to "calibrate" simple estimators of evapotranspiration

David Sumner¹, Jeff Geurink², and Amy Swancar³ ¹U.S. Geological Survey, Lutz, Florida

²Tampa Bay Water, Clearwater, Florida

³Cherokee Nation Technology Services under contract to the U.S. Geological Survey, Lutz, Florida

Written for presentation at the 2017 ASABE Annual International Meeting Sponsored by ASABE Spokane, Washington July 16-19, 2017

ABSTRACT. Direct measurement of actual evapotranspiration (ET) provides quantification of this large component of the hydrologic budget, but typically requires long periods of record and large instrumentation and labor costs. Simple surrogate methods of estimating ET, if "calibrated" to direct measurements of ET, provide a reliable means to quantify ET. Eddy-covariance measurements of ET were made for 12 years (2004-2015) at an unimproved bahiagrass (Paspalum notatum) pasture in Florida. These measurements were compared to annual rainfall derived from rain gage data and monthly potential ET (PET) obtained from a long-term (since 1995) U.S. Geological Survey (USGS) statewide, 2kilometer, daily PET product. The annual proportion of ET to rainfall indicates a strong correlation (r^{2} =0.86) to annual rainfall; the ratio increases linearly with decreasing rainfall. Monthly ET rates correlated closely (r^{2} =0.84) to the USGS PET product. The results indicate that simple surrogate methods of estimating actual ET show positive potential in the humid Florida climate given the ready availability of historical rainfall and PET.

Keywords. Evapotranspiration, eddy covariance, humid subtropical, potential evapotranspiration, unimproved pasture, west-central Florida.

Figure 1. Location of Starkey ET site, in Pasco County, Florida. Also shown are the boundaries of the five Florida State Water Management Districts.

Actual ET from Starkey station

Actual ET from USGS PET gridded product, calibrated to station actual ET

Figure 7. Monthly measured, actual ET and actual ET estimated from GOES PET and crop coefficient at Starkey site, Pasco County, Florida.

Research applications of ET data

- Calibration of simple estimators of evapotranspiration
- Water budget for Tsala Apopka system of lakes

Figure 3. Diagram of idealized water budget for a pool. Change in storage (Δ S) includes the combined storage change of surface water and groundwater in the surficial aquifer. Evaporation (E) includes surface-water evaporation and evapotranspiration from pervious areas of each pool.

laf17-0847_mcbride_fig 03

USGS RET grid for Tsala Apopka area

Percent of landuse type in each RET gridcell

Percent of landuse type in each RET gridcell

AET /RET ratio for each landuse computed from station data

AET computed for gridcell as function of RET multiplied by AET/RET ratios

Other USGS resources

- Gabriel Senay, USGS Fort Collins
 - Operational Simplified Surface Energy Balance (SSEBop)
 - Moderate Resolution Imaging Spectrometer (MODIS)
 - Monthly actual ET (ETa)
 - 1-km grid, global
 - urban settings, over water
 - Alternative to MOD16

Operational Simplified Surface Energy Balance (SSEBop) Modeling Approach

Adapted the "hot" and "cold" pixel concept from SEBAL (Bastiaanssen et al., 1998) and METRIC (Allen et al., 2007) to calculate ET fraction and combine it with ETo.

SSEB: Senay, et al., 2007 sensors; 2011 AWM; SSEBop: 2013 JAWRA.

https://earlywarning.usgs.gov/useta

Future research

Effects of hurricanes on evapotranspiration and carbon flux

- Loss of leaf area
- Calibration and validation of MODIS ETa for Florida
- Meeting in Orlando on October 19th to discuss future research

