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@ T] Introduction

The FloridaWCA, UF Water Institute & Tampa Bay Water

Goal: To increase the regional relevance and usability of climate
and sea level rise models for the specific needs of water suppliers
and resources manages in Florida.

4 Waters. =
= Climate UF Water Institute E%#‘%
& Alllance UNIVERSITY of FLORIDA WATER

Tampa Bay Water Project Research objectives:
Evaluate impact of future climate scenarios on future water supply
availability in the Tampa Bay region.
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Long Term Water Resources Projection Analysis Framework:

[ Precipitation ]

Climate [ Temperature ]

[ Solar radiation ]

[ Evapotranspiration ]

[ Public pumping ]

Human

impacts [ Ag- pumping ]

[ Irrigation ]

l Land use change l
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(Regional
hydrologic
models)
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Long-term
water
resources
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Long Term Water Resources Projection Analysis Framework:

Don’t foLg_et bias correction!
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r I mr !
Dynamic downscaling of coarse climate data. R | || e
— =] =
What we did?
5 . e . -Used MMS5 to dynamically downscale precipitation from
«»  NCEP-NCAR reanalysis data.
o L ewe e
Jo b lAR «  Why we did it?
R . -To test the accuracy of dynamically downscaled climate model
e > Tl = toreproduce climate variables at scales needed for regional
=<l . )~/ retrospective hydrologic studies.
L = What we found?
Coy "~ -Significant errors (daily P) are found even after bias-correction,
R . maybe ok for multi-decadal water resource planning
o B L o0 B We should leave climate modeling to the climate modelers!

Longitude Longitude

Hwang et al. (2011), Journal of Hydrometeorology
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Long Term Water Resources Projection Analysis Framework:
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What we did?
- Used FSU’s dynamically downscaled
retrospective climate data to simulate streamflow.

Why we did it?

- To test the ability of dynamically downscaled
retrospective climate data to reproduce
retrospective hydrology

What we found?
- Bias correction is required to obtain reliable
hydrologic predictions.

Hwang et al. (2013), Reg. Env. Change



@ 3 P rOJ eCtS '___L_Drl_g_Term Water Resources Projection Analysis Framework:

______________
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(low 1 I | climate for

What we did?
- Compare four dynamically downscaled climate

Regional reanalysis data Bias correction using available obs. IHM Results

comparison data tO SimU|ate StreamﬂOW and GW.
Reanalysis data Regional climate model > Sub-basin T
< based P obs. obs. Hydrologic
1 NCEP/NCAR MM5 meso-scale - observation
R1 li del o=t . .
(R1) climate mode! | — ‘ Why we d|d It?
2 NCEP/DOE 2 | > Calibrated results ]
" - To investigate how differences in dynamically
3 ECMWEF RSM (Regional : d R1+MMS’ . .
(ERA40) Spectral mode) D A downscaled climate data propagate into
y S _, ., mwv | hydrologic predictions
(INTB) ' 2 IHM results y g p
—»  Precipitation (P) dataflow grz::sﬂﬂi:ﬁfver IIIII " flﬁi:?;ﬁ:: ‘
e T (T) datafl imulati
emperature ataflow simulation L 20CRWRSM What we found?
External data Model IHM results

- All products had errors that were propagated
All four have timing issues and magnitude issues and enhanced by hydrologic models, results OK
for multi-decadal planning

Hwang et al. (2014), Journal of Hydrology
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Long Term Water Resources Projection Analysis Framework:
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What we did?
- Developed a new statistical downscaling method.

Why we did it?

- Existing statistical downscaling methods did not
reproduce rainfall characteristics in FL very well.
Dynamic downscaling is computationally intensive

What we found?
- Choice of statistical downscaling method matters
in FL. Small-scale spatial variability is important.

Hwang and Graham (2013), Hydrology and Earth System Sciences
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Comparison of downscaling methods
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Long Term Water Resources Projection Analysis Framework:
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statistical downscaling methods.

Why we did it?

- To understand possible hydrologic
implications of different statistical
downscaling methods.

What we found?

- Choice of how you translate global model
output to finer spatial scales matters for
water resources planning. SDBC and BCSA OK

Hwang and Graham (2013), Journal of the American Water Resources Association
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Sensitivity of future water deficit projections using G -. o
1‘? 1: Soﬁtheast | ::ﬂl I What we did? = /
Eg 1 | '. - Evaluated the sensitivity of future water deficit
E; C %‘l - projections to GCM, ET, method and RCP selection
= Y Why we did it?
% B - - To understand sources of uncertainty when using
£ o IO climate projections for future water resources
- planning.
b . e
£ What we found?
e - For Southeast US, GCM uncertainties and ET,
E:: methods uncertainties are both important.

Chang et al. (2016), Hydrology and Earth System Sciences



Simple bias correction

4, conndonnuchl

@3 Projects

Univariate bias correction vs Joint bias correction
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What we did?
- Compared the performance of two bias correction methods to
reproduce correlation among hydrologically important climate
variables (P and ET,) and predict regional hydrologic response.

Why we did it?
- To determine most appropriate bias correction method for Tampa
Bay Water region.

What we found?
- For TBW, simple sequential univariate bias correction was

satisfactory for water resources planning.

Chang et al. (In progress)
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Univariate bias correction vs Joint bias correction: What about rest of USA?

== Water Utility Climate Alliance

Seattle
Public Utilities

Portland
Water Bureau

San Francisco inoi
lllinois New York City

Commission Southern Nevada Supply Wi D Department of
Water Authority Water é ater Department Environmental
Metropolitan & (chair) 5 | Protection
_ North Carolina
" " ] : ‘
Water District & Central Arizona Orange Water and

of So. California Sewer Authority

Project
(vice chair)

San Diego Austin
County Water Authority é Water
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@3 Projects

Univariate bias correction vs Joint bias correction

P vs ET, /
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Possible to use simple univariate bias correction.

Chang et al. (In progress)



@ 3 P rOJ eCtS Long Term Water Resources Projection Analysis Framework:
ownscalk :
climate for
Downscalir

Climate change vs anthropogenic change

(a) By hurhan Changg’bf"’“"’"”"'"“"'"“‘?'“"““' What we d|d?
H D | H H H - Evaluated future hydrologic projections resulting from
ﬂﬂ """ B b U """ ﬁ “““ B ﬁ 7 alternative climate change and human water use scenarios.
I No significantly different. | o
N T e 1V  \ARVYI W TTo ) o
(b)|ByGCM T | 1| - To understand the relative importance of changes in climate
il . : ) " ' versus human water use for projecting future water supply
o e 5 . ot PR R i
Significantly different. What we found?

Sl we wes e wenweswenwe - Differences among climate projections most significant for
streamflow projections, but differences among human water use
scenarios are also significant for GW projections.

Chang et al. (Under review), Hydrology and Earth System Sciences
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Dynamical vs Statistical Downscaling methods.

= = = LIVNEH
BCSA

ROMSC
ROMSU
BC-ROM:
BC-ROM:

RAW-CCSM4

SC
SU

\///

RAW-CCSM4
BCSA
ROMSC
ROMSU
BC-ROMSC

BC-ROMSU

1 2 3

.
4 5

Change in precipitation (mm/day)

RAW-CCSM4
== w= = LIVNEH
BCSA
ROMSC
ROMSU
BC-ROMSC
BC-ROMSU

Precipitation (mm/day)

15

o
o

o

©
o

o

-1.5

CCsm4
BNU-ESM
GFDL-CM3
GFDL-ESM2G
MIROC-ESM
MPI-ESM-LR
MRI-CGCM3
NorESM1-M

bee-csm

Long Term Water Resources Projection Analysis Framework:

What we did?
- Compare FSU’s new dynamically downscaled
climate data to statistical downscaled climate to
see if it improves regional hydrologic predictions.

Why we did it?

- To take advantage of recent advances in
dynamic downscaling methods (coupled
ocean-atmospheric regional climate models)

What we found?
- Bias correction is still required and ...
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What have we learned (big picture)?

e GCMs predict a consistent increase in temperature for Florida (1-3°C
for 2040-2070)

* Future GCM precipitation projections vary widely for Florida and
these differences propagates into significantly different hydrologic
projections

 Downscaling and bias-correction approach matters. Bias correction is
always important

* Need to use multiple GCMs in any future water resource planning
efforts and look for robustness of plans across wide range of
projections.
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Future plan: Water resources p

[ Precipitation ]

Climate [ Temperature ]

[ Solar radiation ]

[ Evapotranspiration ]

[ Public pumping ]

Human

impacts [ Ag- pumping ]

[ Irrigation ]

l Land use change l
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Hydrologic
simulation
(Regional
hydrologic
models)

anning for Tampa Bay Water

Impact
assessment

Long-term
water
resources
planning

: HOW to link all information we have?
1 1. Hydrologic projections.
12. Potential new supply projects.
1 3. Decision triggers?
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