FISH50 Hydrology Forecasts for the Southeastern US

Satish bastola and Vasu Misra

PWSU_CIWG workshop Oct 5

Orlando

Objectives

- Use the FISH50 results to obtain stream flow forecasts over 28 watersheds in the SEUS
- Compare deterministic and probabilistic hydrological forecasts
- Examine the role of bias correction of FISH50 on stream flow forecasts

Seasonal hydrologic forecast

- Regression
- Ensemble streamflow prediction

•Relative role depends upon lead time, hydrologic regime, season

Experimental seasonal Hindcast: Florida Climate Institute FSU Seasonal Hind cast at 50 Km

- •Seasonal run with 6 month lead and initialized in month of June (June-Nov)
- Predicted SST to forecast the global Climate
- •Ensembles of 6 run are produced with the same predicted SST but initialized with varying atmospheric condition.

Seasonal hydrologic Forecast

Data and Methods contd..: Ensemble Prediction System

Skill:

- 1. Deterministic forecast: NSE (Based on Persistence)
 - 1. Skill compared to

$$Q_t^f = \overline{Q}$$

2. Skill compared to Qf=Qt-1

$$Q_t^f = Q_{t-1}$$

2. probabilistic forecast: Relative operating characteristics

Hydrological models

Hydrological modeling

- Semi distributed Lump modeling
 - Based on subdivision of watershed into number of sub basin in order to account for the spatial variability in precipitation
 - The parameter are lumped over the whole watershed.

Conceptual models

Non Linear Tank and linear tank
Spatially Lumped

Linear Tank

Spatially lumped

Nonlinear and linear tank
Spatial variability accounted for using statistical distribution

No of parameter

Hydrological modeling

- 28 SFUS MOPEX watersheds
- Simple conceptual model; the streamflow at basin outlet
- Uncertainty associated with hydrological model prediction
 - Suite of model (varying in complexity)
 - Large number of model parameter can result in comparable model simulation (GLUE methodology).

Flow simulated with FISH50 and Bias corrected FISH50

High Bias and poor Skill

Hydrological simulation with model forcing re sampled from observation based on climate information from FISH50

Ensemble streamflow prediction

- Climate information from FISH50, FISH50 Bias corrected
- Re sampling with replacement from CPC (1948-2001).
- Suit of hydrological model and their plausible parameters (obtained through model calibration).
- Skill evaluation
 - Deterministic approach: based on climatological value and simple persistence model
 - Probabilistic approach: based on ROC (relative operating characteristics) curve

Flow simulated with ESP approach (FISH50 and Bias corrected FISH50)

Compared to biases associated with RAW and Bias corrected FISH 50, Biases associated with ESP is small.

Skill scores: Deterministic/Probabilistic

Hydrological simulation scheme (ESP)

Area of ROC above 0.5: Skill of climate information

Based on: Six ensembles from FISH50 (28 watersheds of SEUS); Based on four category; and based on six month total rainfall (Jun-Nov)

Watersheds in NC: FISH50 show some skill for very wet and medium wet quartiles

Watersheds in South Florida: FISH50 show some skill in very dry, Medium dry quartile

Probabilistic skill of seasonal hydrologic forecast (Area under ROC curve) :FISH50

Probabilistic skill of seasonal hydrologic forecast (Area under ROC curve) :FISH50

Summary

- Assessment of FISH50, an experiment retrospective climate forecast, for seasonal hydrologic forecast is made using ensemble streamflow prediction.
- The direct use of FISH50 for hydrological simulation is detrimental as the biases are huge.
- Ensemble streamflow prediction using climate information derived from FISH50 (from resampling observations) showed improvement over direct use of FISH50 data.
- In most of the watershed, the skill of some of the ensemble member is found superior to the Ensemble average.
- The hydrologic forecast based on FISH50 is more skillful than forecast based on persistence.
- Persistence is a poorer forecast than climatology for majority of the SEUS watersheds.
- Discriminative ability of hydrologic forecast over climatological forecast is greater for medium wet/medium dry events.

Streamflow

