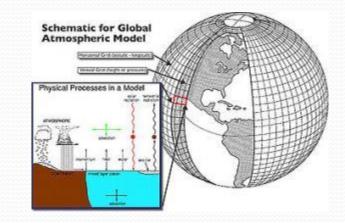


Seasonal forecasting skill of the National Multimodel Ensemble (NMME) over southeastern United States


Di Tian and Chris Martinez **FloridaWCA Workshop 9** June 26, 2013, Orlando, FL

- Seasonal climate forecasts can be used to reduce the damages caused by climate variability
- Seasonal forecasts can be made by general circulation models (GCMs)
 - Statistical downscaling
 - Multimodel ensemble
- National Multimodel Ensemble (NMME)

- Evaluate the skill of NMME models to forecast the El Nino

 Southern Oscillation (ENSO)
- 2. Evaluate the skill of the downscaled seasonal precipitation(P) and temperature (T) for the NMME models in the SEUS
- 3. Evaluate the skill of the downscaled **CFSv2** forecasts of reference evapotranspiration (**ETo**) and relevant variables in the SEUS:
- Temperature (maximum, minimum and mean)
- Solar radiation
- Wind speed

NMME historical forecast (hindcast) dataset

No.	Model	Abbr.	Members	Period	Lead Month
1	NCEP-CFSv1	CFSv1	15	1981-2009	0-8
<u>2</u>	NCEP-CFSv2	<u>CFSv2</u>	<u>24</u>	<u>1982-2010</u>	<u>0-9</u>
3	COLA-RSMAS-CCSM3	CCSM3	6	1982-2010	0-11
4	IRI-ECHAM4p5-AnomalyCoupled	ECHAM-Anom	12	1982-2010	0-7
5	IRI-ECHAM4p5-DirectCoupled	ECHAM-Dir	12	1982-2010	0-7
6	GFDL-CM2p1	GFDL	10	1982-2010	0-11
7	NASA-GMAO (incomplete)	GMAO	10	1982-2010	0-8
8	NASA-GMAO-062012 (incomplete)	GMAO-062012	12	1982-2010	0-8
9	GFDL-CM2p1-aer04 (incomplete)	GFDL-aer04	10	1982-2010	0-11

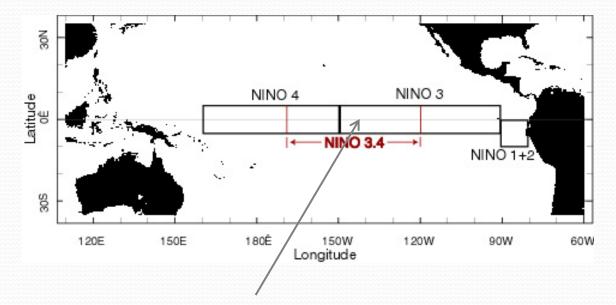
Forecast evaluation

 Brier Skill Score (BSS) is used to evaluate the accuracy of probability forecast

 $BSS = 1 - \frac{BS_{forecast}}{BS_{c \lim ato \log y}}$

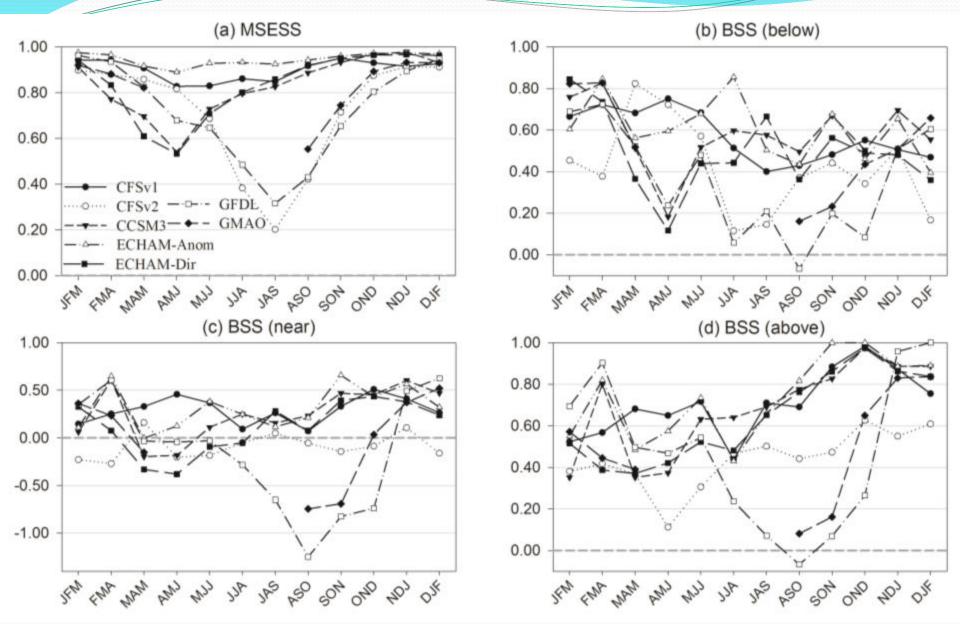
 $BS = \frac{\sum_{i=1}^{N} (p_i - o_i)^2}{N}$

 BSS is used to determine how many of the forecast members correctly forecasted the correct tercile compared to climatology (which is 33%)

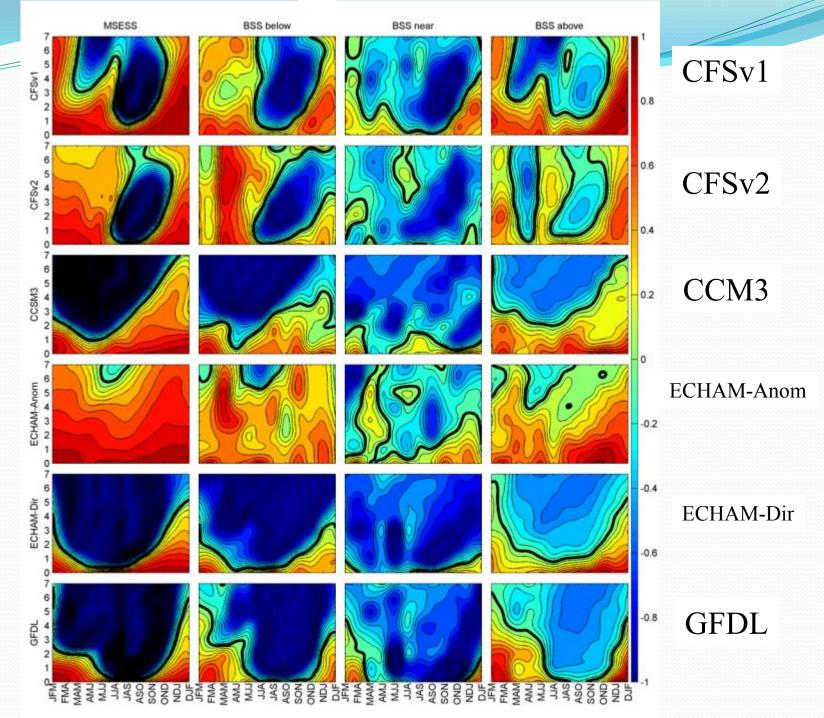

 $-\infty$ to 1

 $-\infty$ to 1

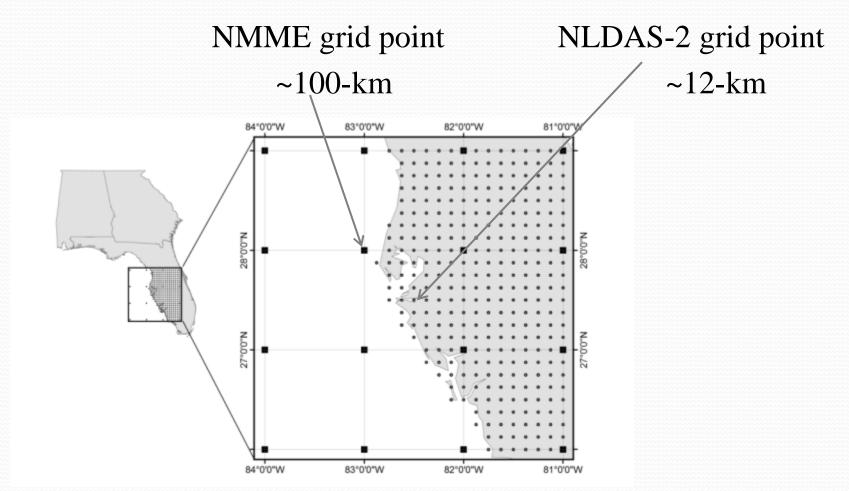
• Mean square error skill score (**MSESS**) is used to evaluate the accuracy of **deterministic forecast**


$$MSESS = 1 - \frac{MSE_{forecast}}{MSE_{c \lim ato \log y}}$$

Objective 1: Skill of the ENSO forecast Evaluate against observations



Calculate the spatial average of the **SST** in this region for each NMME model


Skill of the ENSO forecast in different seasons at lead 0

Objective 2: Skill of the downscaled P and T forecast of NMME

Forcing dataset of **NLDAS-2** were used as surrogate of observations for statistical downscaling and forecast verification

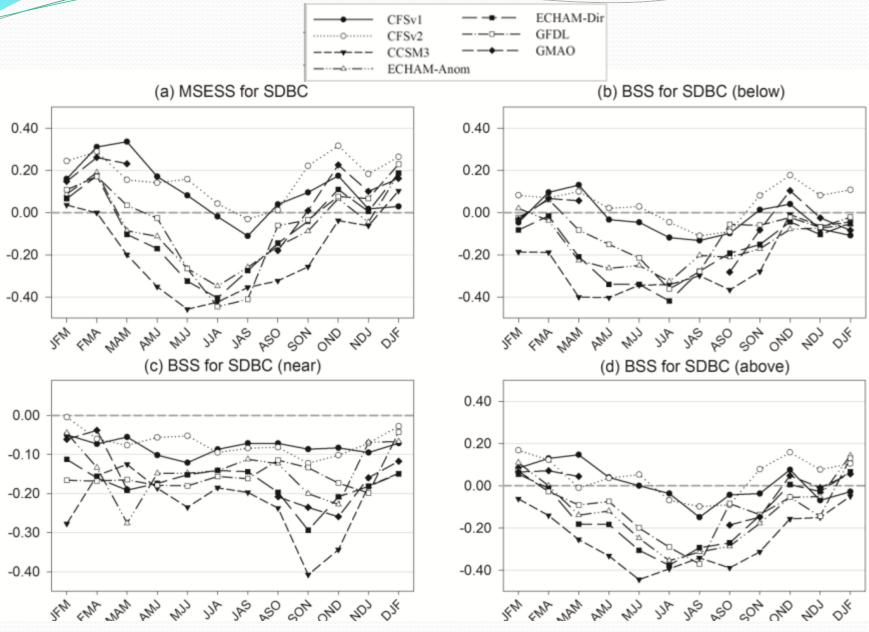
Statistical downscaling methods

- <u>Model output statistics (MOS)</u>: Corrects systematic errors of the NMME output
 - Spatial disaggregation (SD)
 - Spatial disaggregation with bias correction (SDBC)
- <u>Perfect prognosis (PP)</u>: Establishes statistical model using large-scale and local-scale observed data (**SST in Nino3.4** and **P**, **T**) and apply this model to the NMME output
 - Linear regression (LR)
 - Locally weighted polynomial regression (LWPR) (nonparametric nonlinear regression)
- Direct interpolation (**INTP**) of the raw output as a benchmark
- Leave-one-out cross validation was conducted

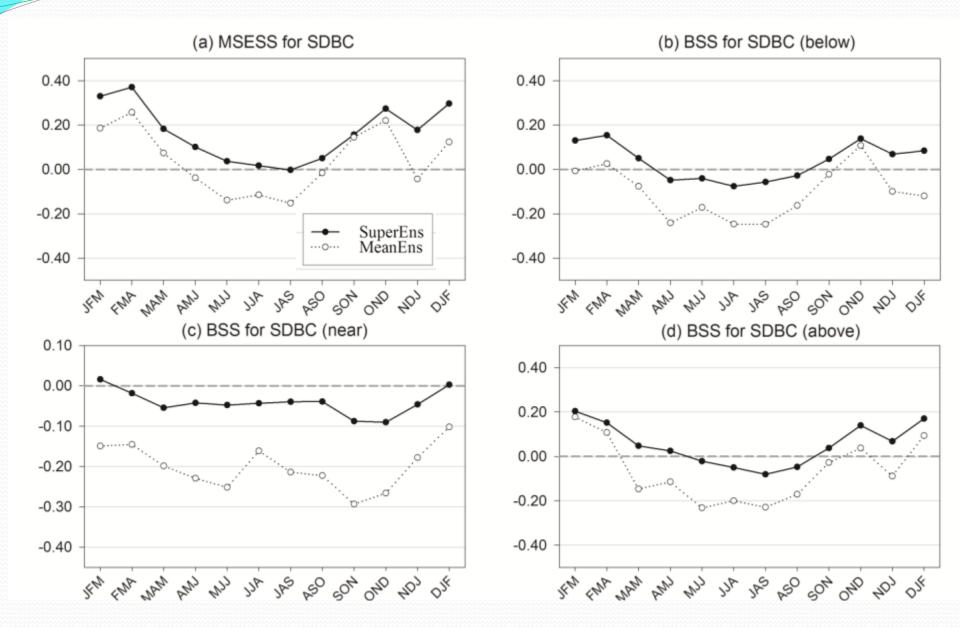
Overall mean of precipitation forecasting skills for

NMME models at lead 0

							Models					
SS	Methods	CFSv1	CFSv2	CCSM3	ECHAM- Anom	ECHAM- Dir	GFDL	GFDL- aer04	GMAO	GMAO- 062012	MeanEns	SuperEns
MSESS	INTP	-0.426	-0.094	-1.040	-0.677	-0.710	-0.872	-1.522	-0.063	-0.694	-0.229	-0.133
	SD	0.110	0.164	0.003	0.020	0.018	0.051	-0.139	0.103	0.080	0.147	0.101
	SDBC	0.107	0.167	-0.194	-0.069	-0.076	-0.046	-0.260	0.120	0.035	0.042	0.166
	LR	0.145	0.127	0.142	0.150	0.145	0.136	-	0.169	-	0.142	0.152
	LWPR	0.165	0.136	0.140	0.171	0.158	0.132	-	0.166	-	0.161	0.171
	INTP	-0.205	-0.095	-0.938	-0.628	-0.642	-0.713	-0.729	-0.205	-0.365	-0.295	-0.133
DCC	SD	-0.049	0.021	-0.349	-0.198	-0.205	-0.148	-0.259	-0.086	-0.106	-0.293	-0.013
BSS Below	SDBC	-0.031	0.042	-0.243	-0.156	-0.185	-0.106	-0.263	-0.034	-0.066	-0.105	0.036
Delow	LR	0.032	0.017	0.029	0.034	0.033	0.022	-	0.038	-	0.026	0.037
	LWPR	0.040	0.021	0.039	0.048	0.040	0.021	-	0.035	-	0.036	0.047
	INTP	-0.151	-0.109	-0.329	-0.230	-0.230	-0.274	-0.253	-0.207	-0.237	-0.201	-0.056
DCC	SD	-0.107	-0.107	-0.787	-0.294	-0.307	-0.317	-0.264	-0.312	-0.292	-0.922	-0.136
BSS Near	SDBC	-0.080	-0.069	-0.223	-0.141	-0.175	-0.153	-0.177	-0.158	-0.167	-0.201	-0.041
Itear	LR	-0.025	-0.024	-0.035	-0.028	-0.028	-0.027	-	-0.030	-	-0.034	-0.020
	LWPR	-0.025	-0.024	-0.035	-0.027	-0.028	-0.028	-	-0.031	-	-0.033	-0.019
	INTP	-0.373	-0.141	-0.426	-0.318	-0.326	-0.330	-0.537	-0.182	-0.395	-0.219	-0.075
DCC	SD	-0.011	0.027	-0.291	-0.152	-0.159	-0.132	-0.282	-0.026	-0.070	-0.168	0.025
BSS Above	SDBC	0.009	0.044	-0.252	-0.124	-0.138	-0.106	-0.269	-0.007	-0.041	-0.066	0.054
10000	LR	0.035	0.023	0.031	0.038	0.037	0.029	-	0.052	-	0.031	0.042
	LWPR	0.052	0.032	0.041	0.054	0.045	0.029	-	0.051	-	0.044	0.056

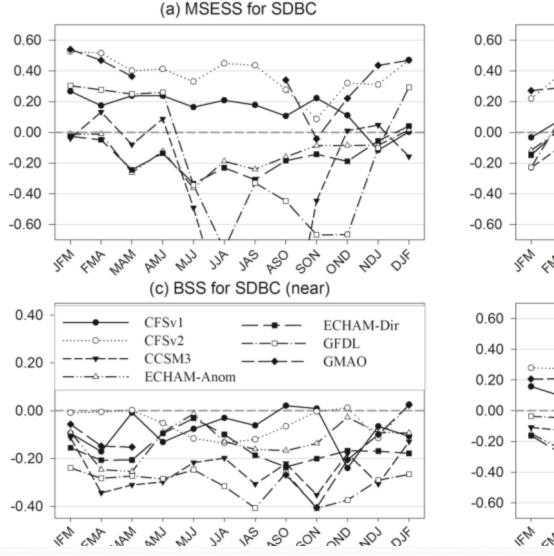

Overall mean of temperature forecasting skills for

NMME models at lead 0

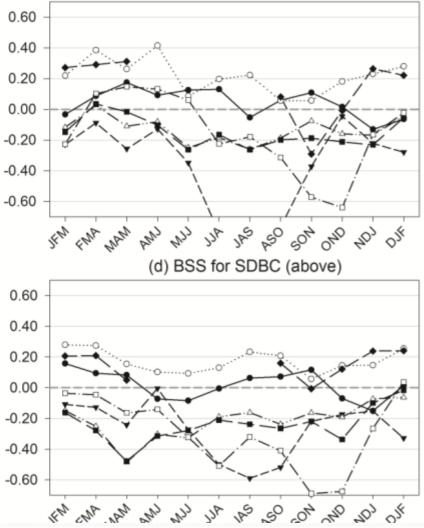

							Models					
SS	Methods	CFSv1	CFSv2	CCSM3	ECHAM- Anom	ECHAM- Dir	GFDL	GFDL- aer04	GMAO	GMAO- 062012	MeanEns	SuperEns
MSESS	INTP	-3.370	-2.316	-2.494	-2.839	-2.770	-2.216	-	-0.903	-2.273	-2.478	-3.991
	SD	0.143	0.367	-0.198	-0.384	-0.421	-0.663	-1.441	0.313	0.253	0.167	0.195
	SDBC	0.150	0.379	-0.436	-0.133	-0.154	-0.161	-0.683	0.350	0.190	0.190	0.258
	LR	0.175	0.085	0.096	0.098	0.090	0.092	-	0.096	-	0.093	0.104
	LWPR	0.229	0.129	0.169	0.187	0.162	0.079	-	0.094	-	0.170	0.180
	INTP	-1.157	-0.877	-0.785	-0.272	-0.264	-0.595	-0.963	-0.413	-0.638	-0.113	-0.049
BSS	SD	0.012	0.196	-0.407	-0.186	-0.187	-0.188	-0.457	0.159	0.125	-0.042	0.103
Below	SDBC	0.043	0.216	-0.360	-0.133	-0.150	-0.158	-0.440	0.143	0.144	0.019	0.135
	LR	0.008	-0.005	0.004	0.008	0.007	-0.002	-	0.007	-	0.001	0.011
	LWPR	0.046	0.043	0.047	0.068	0.045	-0.003	-	0.009	-	0.050	0.063
	INTP	-0.322	-0.246	-0.236	-0.220	-0.212	-0.269	-0.431	-0.213	-0.282	-0.212	-0.169
DCC	SD	-0.117	-0.083	-0.437	-0.111	-0.125	-0.240	-0.270	-0.103	-0.181	-0.436	-0.052
BSS Near	SDBC	-0.080	-0.048	-0.248	-0.125	-0.161	-0.304	-0.279	-0.164	-0.146	-0.221	-0.031
Iteal	LR	-0.041	-0.024	-0.038	-0.030	-0.031	-0.030	-	-0.034	-	-0.036	-0.022
	LWPR	-0.045	-0.026	-0.039	-0.033	-0.033	-0.036	-	-0.046	-	-0.037	-0.022
	INTP	-0.301	-0.268	-0.362	-0.719	-0.700	-0.459	-1.350	-0.115	-0.284	-0.102	-0.107
BSS	SD	0.007	0.158	-0.285	-0.214	-0.230	-0.307	-0.485	0.164	0.083	-0.098	0.076
Above	SDBC	0.018	0.173	-0.269	-0.216	-0.241	-0.295	-0.439	0.152	0.099	-0.033	0.096
	LR	-0.001	-0.016	-0.011	-0.006	-0.011	-0.014	-	-0.004	-	-0.012	-0.001
	LWPR	0.040	0.019	0.038	0.055	0.040	0.009	-	0.011	-	0.043	0.054

SDBC: Precipitation forecasting skills for NMME

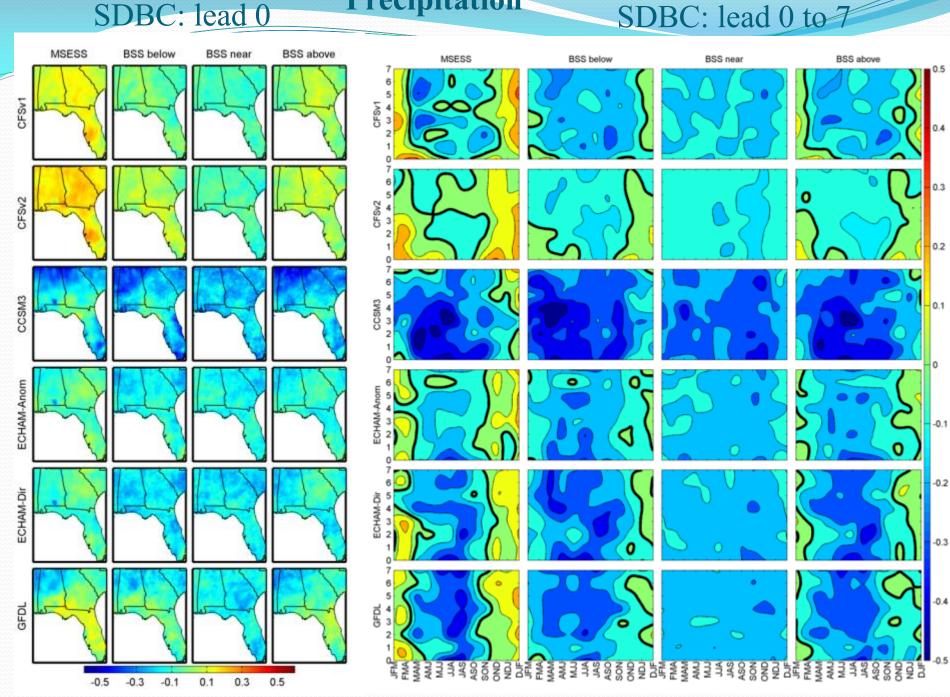
models in different seasons at lead 0



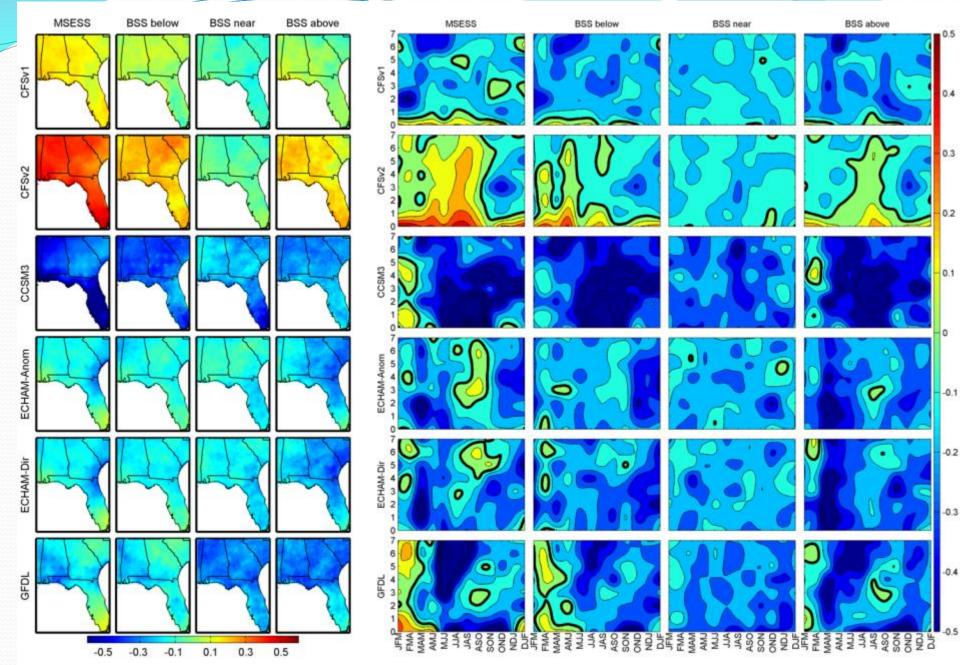
SDBC: Precipitation forecasting skills for NMME ensembles in different seasons at lead 0

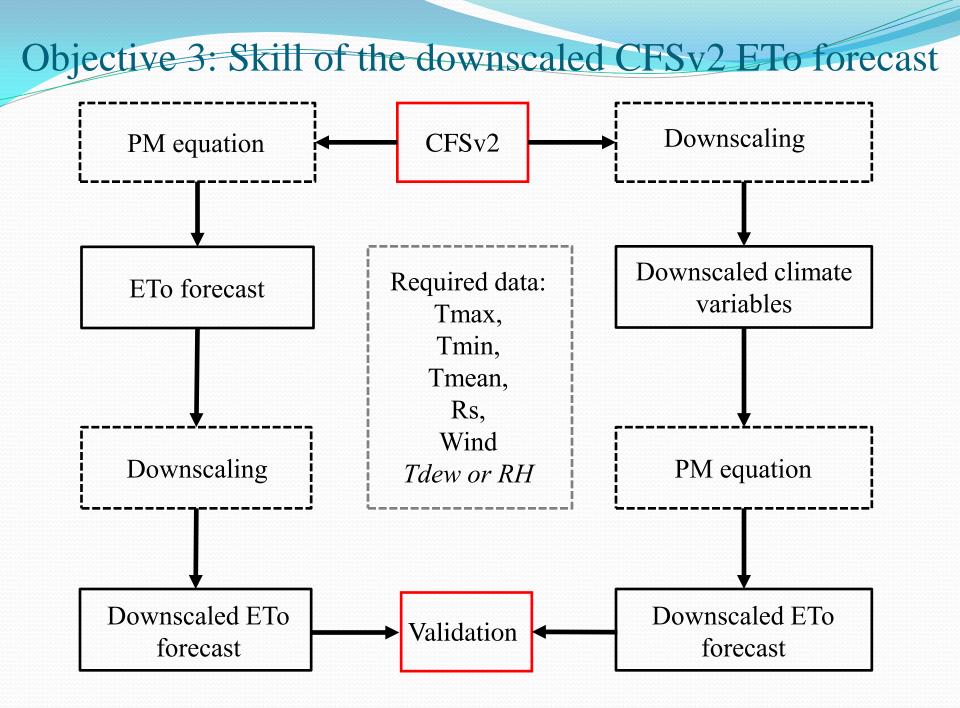


SDBC: Temperature forecasting skills for NMME


models in different seasons at lead 0

(b) BSS for SDBC (below)


SDBC: lead 0

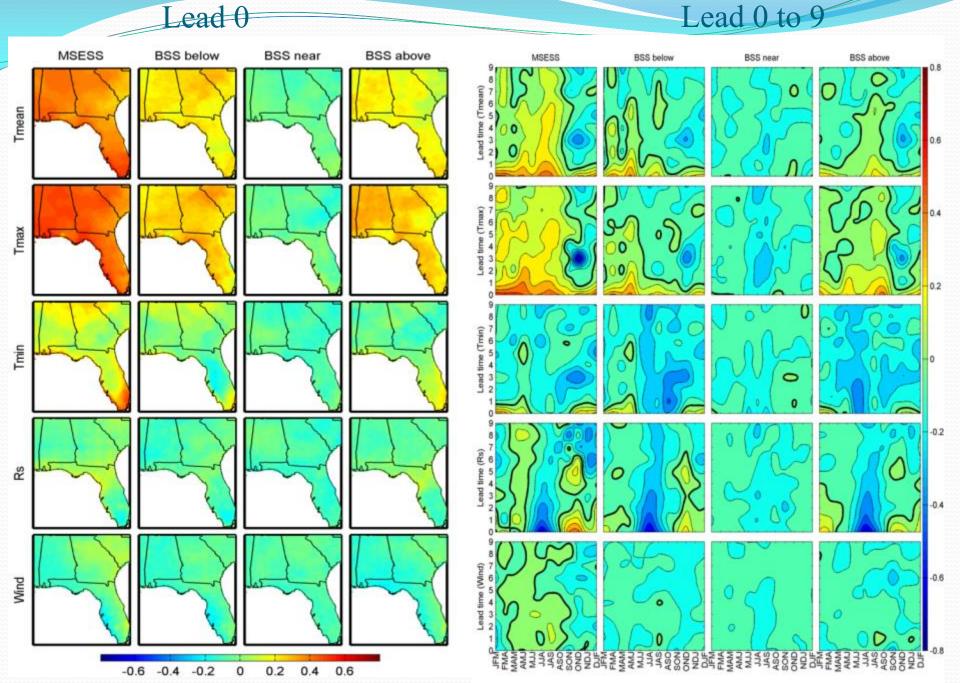


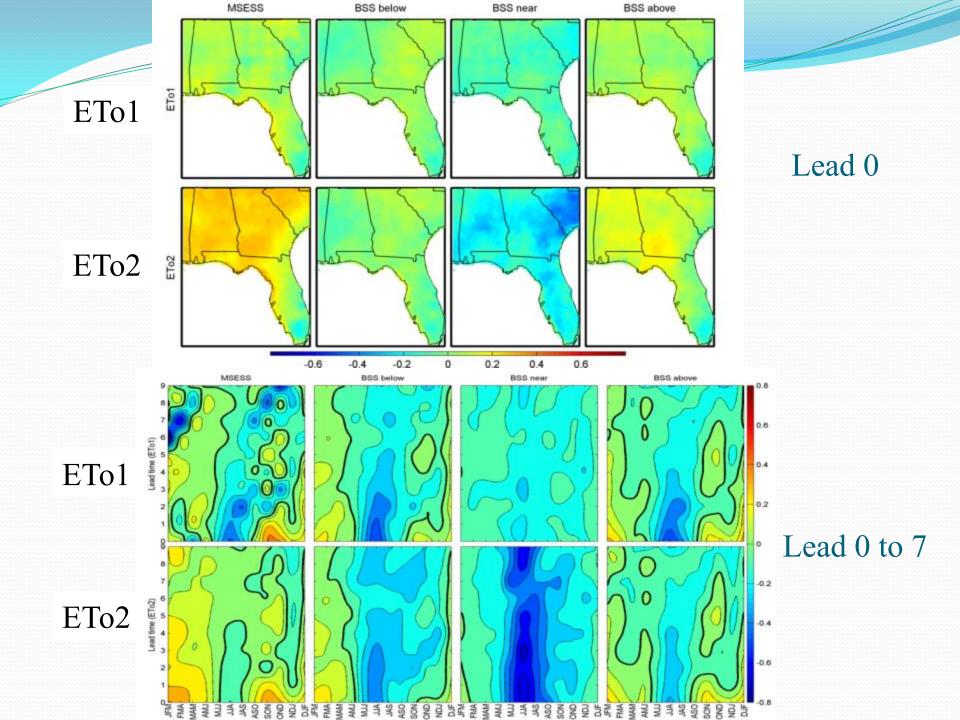
Precipitation

SDBC: Lead 0

Temperature SDBC: Lead 0 to 7

Overall mean skills in lead 0

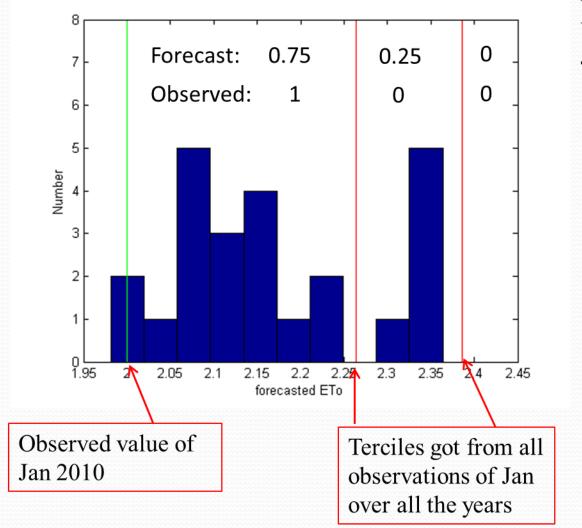

Variables		SE)		SDBC				
	MSESS	BSS			MSESS	BSS			
		Below	Near	Above		Below	Near	Above	
Tmean	0.367	0.196	-0.083	0.158	0.379	0.216	-0.048	0.173	
Tmax	0.410	0.177	-0.165	0.218	0.443	0.254	-0.053	0.261	
Tmin	0.148	0.012	-0.111	-0.038	0.145	0.020	-0.086	-0.025	
Rs	0.027	-0.092	-0.120	-0.071	-0.020	-0.083	-0.094	-0.053	
Wind	-0.172	-0.100	-0.081	-0.115	-0.055	-0.095	-0.081	-0.111	


Variables		SE)		SDBC				
	MSESS		BSS		MSESS		BSS		
		Below	Near	Above		Below	Near	Above	
ETo1*	0.156	-0.070	-0.353	-0.033	0.052	-0.002	-0.089	0.034	
ETo2**	0.188	-0.089	-0.334	0.043	0.216	-0.006	-0.212	0.099	

* ETo was calculated using the CFSv2 variables before downscaling

** ETo was calculated using the downscaled CFSv2 variables

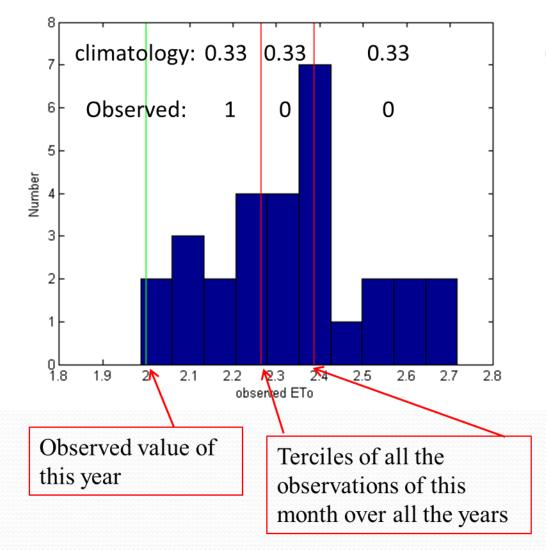
CFSv2 variables



Summary

- 1. Most of the NMME models showed high skill on forecasting ENSO
- 2. The forecasting skill of P and T for NMME was improved through different statistical downscaling methods
- 3. The skill is higher in cold seasons than warm seasons
- 4. The LR and LWPR methods did better than the SD and SDBC methods for downscaling P but worse than the SD and SDBC for downscaling T
- 5. In the first lead, CFSv2 model achieved the highest skill on forecasting T with the SDBC method; the ECHAM model and the multimodel ensemble forecasts achieved the highest skill on forecasting P with the LWPR method
- 6. CFSv2 showed great potential on forecasting seasonal ETo

Additional Information


Brier Score (BS) of Forecast

Ensemble Forecast: Jan 2010, 24 members Lower tercile BS*f*: $BS_f = \frac{1}{n} \sum_{1}^{n} (p_j^f - I_j^o)^2$ $= (0.75 - 1)^2$

= 0.0625

Brier Score (BS) of Climatology

Obs: Jan, 1982-2010

Lower tercile BSc:

$$BS_c = \frac{1}{n} \sum_{1}^{n} \left(p_j^c - I_j^o \right)^2$$

$$=(0.33-1)^{2}$$

= 0.449

To calculate Lower tercile BSS:

$$BSS = 1 - \frac{BS_f}{BS_c}$$

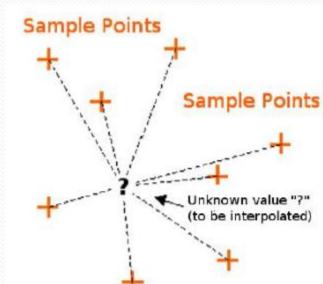
$$= 1 - 0.0625/0.449$$

= 0.861

- Similarly, we can calculate BSS in other terciles
- Deterministic forecast was calculated by **ensemble mean**
- Replacing the BS with MSE, we can calculate MSESS
- The BSS is a very conservative evaluation metrics of probabilistic forecast (Stefanova and Krishnamurti, 2002)

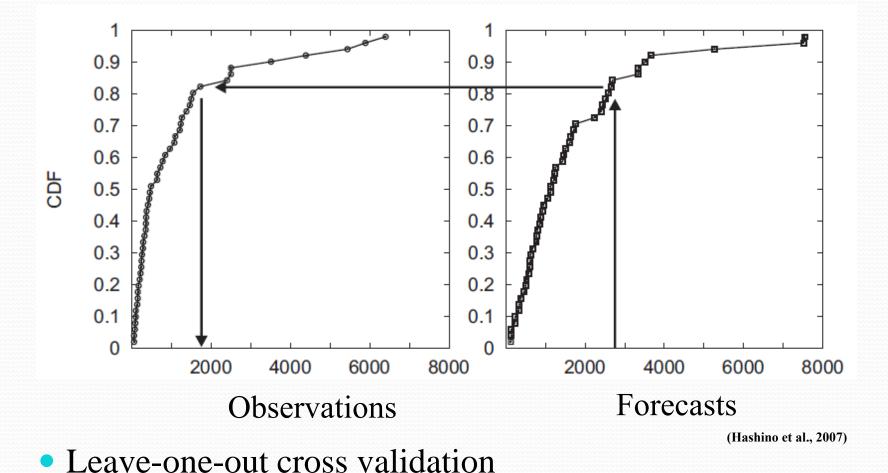
MOS downscaling methods

• SD


• Spatially interpolate the anomalies of the NMME forecasts using inverse distance weighting (IWD) and then add to the climatology of the NLDAS-2

• SDBC

- Spatially interpolate the anomalies of the NMME forecasts using IWD
- Quantile mapping bias correction of the anomalies using the anomalies of NLDAS-2 and add the bias corrected anomalies to the climatology of the NLDAS-2


MOS downscaling methods

- IDW estimates values at a point by weighting the influence of nearby data the most, and more distant data the least.
- Procedure:
 - Compute distances of the unknown points to all the points in the dataset
 - Compute the weight of each point. Weighting function is the inverse power of the distance.
 Sample Points
 - Estimated value is the weighted average

MOS downscaling methods

• Quantile mapping bias correction technique

PP downscaling methods

• LR: $Y_{ij} = a_{ij} + b_{ij}X_{ij} + e_{ij}$ i: season; j: grid

- Fit *linear regression models* for X (the observed SST in Nino3.4 region) and Y (the P or T2M of NLDAS-2) for each season and each grid point
- Apply these *linear regression models* to the NMME SST in Nino3.4 region to predict the P or T2M for each season and each grid point
- Estimate regression residuals
- Generates 10 random numbers from regression residuals by assuming normal distribution with mean 0 and standard deviation of regression residuals
- Calculate ensemble forecast by adding 10 generated numbers to the predicted value

PP downscaling methods

• **LWPR:** $Y_{ij} = f(X_{ij}) + e_{ij}$ *i*: season; *j*: grid

- Fit *locally weighted polynomial functions (f)* for X (the observed SST in Nino3.4 region) and Y (the P or T2M of NLDAS-2) for each season and each grid point
- Apply these functions to the NMME SST in Nino3.4 region to predict the P or T2M for each season and each grid point
- Estimate regression residuals
- Generates 10 random deviates from regression residuals by assuming normal distribution with mean 0 and standard deviation of local regression residuals
- Calculate ensemble forecast by adding 10 generated numbers to the predicted value