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Abstract

To date, there are a high volume of studies concerning climate change impact assess-

ments in ecosystems. Meta‐analysis, scenario development, and causal chains/loops

have been used as tools in these assessments as well as in decision making either indi-

vidually or combined in pairs. There exists a need to develop decision support tools

that improve the linkage between climate‐impacts research and planning, manage-

ment, adaptation, and mitigation decisions by providing quantitative and timely

information to stakeholders and managers. The overall goal is to address this need.

A specific objective was to develop a decision support tool in eco‐hydrological

applications that combine three components: meta‐analysis, scenario development,

and causal chains/loop. The developed tool is novel, warranted, and timely. The use

of the tool is demonstrated for Florida. The meta‐analysis of 32 studies revealed

precipitation changes ranged between +30% and −40%, and temperature changes

ranged from +6°C to −3°C for Florida. Seven incremental scenarios were developed

at 10% increments in the precipitation change range and nine scenarios with 1°C

increments in the temperature change range (driving forces). The causal chains/loops

were developed using Driver‐Pressure‐State‐Impact‐Response framework for

selected ecosystems and environment (e.g., agroecosystem, mangroves, water

resources, and sea turtles) in Florida. The driving force puts pressure on the

ecosystem or environment impacting their state, which in turn had a response (e.g.,

mitigation and adaptation strategies). The framework used indicators selected from

studies on climate impact assessments (meta‐analysis and others) for the selected

ecosystems as well as author expertise on the topic to develop the chains/loops.

The decision tool is applicable to stakeholders and any ecosystem within and

outside of Florida.
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1 | INTRODUCTION

Altered climate can impact the environment as well as affect natural

and managed ecosystem processes. The potential impacts of altered

climate when superimposed on other stressors such as pollution,

habitat destruction, invasive species, land resource use, and extreme

natural events may lead to significant consequences (Scavia et al.,

2002). Decision tools can allow us to examine and predict impacts of

altered climate on natural and managed ecosystems. Powerful

analytical tools are useful in describing future risk, the marginality of

systems, and guide actions to mitigate risk (Adger, 2006). Decades of

studies have resulted in various tools for water and ecosystem

management, for crop breeding, agricultural producer guidelines, and

forestry management strategies. However, a few decision‐making

tools have been developed for planning and management of ecosys-

tems due to future climate scenarios (Fowler, Blenkinsop, & Tebaldi,

2007). Further, there remains a disconnect between the supply and

demand of climate information and the need for tailoring the informa-

tion for decision‐making purposes (Anandhi & Blocksome, 2017). This

disconnect is exacerbated by the high volume of studies concerning

climate change impacts to date and the availability of multiple

methods for scenario development (Fowler et al., 2007).

Meta‐analyses can be a powerful approach to assess and synthe-

size the high volume of studies on altered climate and its impact on

various ecosystems (Mantyka‐pringle, Martin, & Rhodes, 2012). It rep-

resents a systematic approach to identifying, appraising, synthesizing,

and (if appropriate) combining the results of relevant studies to arrive

at conclusions about how a body of research has been applied (Stroup

et al., 2000). Meta‐analyses has been used to explore common discon-

nects between knowledge and action by focusing on the relative prev-

alence of research questions asked, trends in study design, if and how

these have changed over time, and whether any notable gaps remain

that require new research (Mosteller & Colditz, 1996).

The future is uncertain and unknown; therefore, changes and

variability in climate are not easily detected. Scenarios can be power-

ful tools for communicate climate alterations, for assessing potential

vulnerabilities and directing the two major responses to climate‐driven

events—mitigation and adaptation (Anandhi, 2017; Anandhi, Omani,

et al., 2016; Anandhi, Steiner, & Bailey, 2016). Scenarios must be

coherent, internally consistent, and represent plausible descriptions

of possible future climate states (Berkhout, Hertin, & Jordan, 2002).

The Intergovernmental Panel on Climate Change (IPCC) has developed

the most commonly used future climate scenarios from global climate

models (GCMs). These IPCC scenarios continue to evolve from IS92,

(Leggett et al., 1992), the Special Report on Emissions Scenarios,

(Nakicenovic et al., 2000) and more recently from representative

concentration pathways (Van Vuuren et al., 2011). These global scale

climate scenarios are translated to regional and local scale climate

scenarios using a number of statistical and dynamical downscaling

tools and methodologies (Anandhi, 2010; Anandhi et al., 2018; Pan

et al., 2011) with their own advantages and disadvantages.

Given the high volume of studies and lines of evidence, and the

availability of a number of methods for developing scenarios (Fowler

et al., 2007) and the need to develop decision support tools, that

developing a tool that combines scenario development and meta‐
analysis is novel, warranted, and timely. Additionally, it would improve

the linkages between climate‐impacts research and planning, manage-

ment, adaptation, and mitigation by providing quantitative information

to stakeholders and managers. The objective of this study was to

develop and demonstrate the decision support tool that could reduce

the disconnect between the supply and demand for climate information

in making decisions from climate change impact assessment of natural

and man‐made ecosystems. The tool developed by this study has three

major components: (a) perform meta‐analysis—synthesize and combine

recent relevant studies to arrive at conclusions about a body of

research on temperature and precipitation changes, (b) develop climate

scenario(s) (synthetic or incremental) from meta‐analysis, and (c)

development causal chain and loops (Figure 1). Although the developed

decision tool is demonstrated by applying it to selected ecosystems and

environments in Florida, USA, the tool can be used by multiple stake-

holders in various ecosystems and environments throughout the world.
2 | STUDY REGION AND DATA USED

2.1 | Description of study region

Florida has been selected for this study (Figure 1) because it has many

endemic plants, vertebrates, and insects that are only found in Florida

and the tropics. (Reece, Noss, Oetting, Hoctor, & Volk, 2013). The

state has approximately 2,000 miles of coastline, and the maximum

distance from the coast less than 150 km (Hamed et al., 2016; Reece

et al., 2013). Florida's coastline contains diverse ecosystems and land-

scapes which are suitable habitat for many endangered species for

example, sea turtles (Hamed et al., 2016). In general, coastal estuaries

and bays are of great ecological value and economic significance. They

produce about 50% of global ecosystem services that benefit humans

(Barbier et al., 2011).

Agricultural production is one of the most important economic

drivers for Florida's economy (Cheng, Nnadi, & Liou, 2015). In 2016,

Florida ranks first for fresh market snap bean, cucumber, grapefruit,

oranges, sugarcane, tomatoes, and watermelon production; second in

production of bell peppers, sweet corn, squash, and strawberries; third

in production cabbage and honey; and fourth in peanuts. Overall,

Florida accounts for roughly 54% of total U.S. citrus production

(USDA‐NASS, 2017) and ranks seventh in U.S. for agricultural exports,

with over $4 billion in agriculture commodities shipped in 2015

(FDACS, 2014; FDACS, 2016). Florida crops yield 63% of the winter

vegetables for the United States with revenues of $1.48 billion in

1995–1996 (Cheng et al., 2015).

Florida is the fourth most populous state in the United States and

the third fastest growing state, with more than 17% net increase in

population from 2000 to 2010. Florida's biodiversity is threatened

by these related stressors including increasing urbanization (Reece

et al., 2013), land‐use change (Mulkey, 2007), increasing population,

and socio‐economic growth. Altered land use in turn has impacted

the climate of the region (Misra, Mishra, Bhardwaj, Viswanthan, &

Schmutz, 2018). Natural and anthropogenic disturbances vary in dura-

tion, frequency, size, and intensity. These stressors and play a crucial

role in facilitating adaptive change (Alongi, 2008). Drought‐induced



FIGURE 1 (a) Location map of study region: Florida, USA. (b) Three components of the decision support tool. (c) Steps followed in development
of tool. In the figure, DPSIR refers to Driving Forces Pressure State Impacts Response. Snowball sampling refers to using the reference list of a
paper or the citations to the paper to identify additional papers. Incremental scenario refers to a method of scenario development where a climatic
variable is changed incrementally by arbitrary amounts (e.g., +1°C, +2°C, +3°C, +4°C change in temperature). That does not necessarily present a
physically plausible or realistic set of changes. Causal chain is an ordered sequence of events in which any one event in the chain causes the next.
Causal loop is when an event in the chain causes an earlier event in the chain then the loop developed is referred to as causal loop
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wildfire also pose serious problems in Florida. Statistics show that

25,137 fires burned 1.5 million acres between 1998 and 2002 (Cheng

et al., 2015). The close proximity of coastal ecosystems, large human

populations, and high productivity make ecosystems in Florida some

of the most heavily utilized and threatened on the planet (Barbier

et al., 2011). The Everglades, located in South Florida, is one of the

world's largest wetlands. The Everglades is an example of an estuary

that has been substantially altered by humans (Kearney et al., 2015).

El Niño Southern Oscillation also strongly influence the climate of

Florida and agriculture (Cheng et al., 2015). Managed ecosystems have

fared better than natural ecosystems to changes (Mulkey, 2007).

Climate change and variability will interact symbiotically with existing

and increased stresses, potentially accentuating negative impacts

(Scavia et al., 2002). Florida was chosen to demonstrate the applica-

tion of the decision support tool due to its unique economic,

geographic, demographic, and ecological characteristics.
2.2 | Data used

The first step in using the decision support tool is the meta‐analysis. In

the meta‐analysis, relevant data are collected from peer‐reviewed

published studies. These studies provide either observed or synthe-

sized data about changes in temperature and precipitation, direction
of change as well as impacts from altered climate on Florida ecosys-

tems. For example, Table 1a,b shows the citation and details about

data sources, methodology, and how changes were estimated, time

period of study, temporal scale (e.g., annual and seasonal), and spatial

scale (e.g., local, state, regional, or national). Meta‐analysis methodol-

ogy is described in more detail in Section 3.1. Data derived in the

meta‐analysis were used as input in the second component for sce-

nario development. Finally, expert knowledge, Table 1, and additional

studies were used to develop causal chains and loops—the third

component of the decision support tool.
3 | METHODOLOGY

The decision support tool has three components: meta‐analysis, sce-

nario development, and development of causal chains and loops

(Figure 1). Each of the three components can be stand‐alone or be

combined with the other components (Figures 2 and 3).

3.1 | Component 1 of decision support tool: Meta‐
analysis

Meta‐analysis is defined as the statistical analysis of relevant studies

available in literature. The selected studies were analysed in a way



TABLE 1a Change in temperature observed from meta‐analysis

References Region Variable Observation (O)/Models (M) Period Value (°C)

Devitt and Tol (2012) FL T annual O 1880–2010 0.2 to 0.4
M 2010–2100 5

Solomon et al. (2007) FL T annual O 1997–2007 0.1

Maul and Sims (2007) SF T annual O 1860–2002 0.2 to 0.4

Obeysekera, Barnes, and Nungesser (2015) SF T annual M 2011–2060 1.5

Obeysekera et al. (2011) SF T annual M 1985–2055 1 to 2

Nungesser et al. (2015) SF T annual O 1965–2003 1.5

Koch et al. (2015) SF T annual M 2014–2060 1.5

Orem et al. (2015) SF T annual M 2014–2060 1.5

USEPA (2016) USA T annual M 1901–2015 0.05 to 1.38

Portmann et al. (2009) USA T min (May & June) O 1950–2006 0.02 to 0.4
T max (May & June) 0.00 to 0.2

Hansen et al. (2006) G T annual O 2001–2005 0.2 to 0.4

Karl (2009) USA T winter O 1975–2007 1.11
T annuala M 1993–2008 0.55
T annuala M 2010–2029 1.11
T annuala M 2040–2059 1.11 to 2.22
T annuala 0.55 to 1.66
T annuala M 2080–2099 2.77 to 3.88
T annuala 1.11 to 2.22

Meehl and Tebaldi (2004) T min (daily) M 1975–2088 1.7 to 2.5

Walther et al. (2002) T annual O 1976–2002 0.7

Easterling et al. (1997) G T annual max O 1961–1990 3
T annual min O 1
T diurnal O 3

Jones et al. (1999) G T annual O 1925–1944 0.5
O 1978–1997 0.5
O 1961–1998 0.2 to 0.4

Fiedler et al. (2001) FL T annual M 2001–2100 2.22 to 5.55

Stephenson et al. (2014) SF T annual O 1961–2010 0.3

Kunkel et al. (2013) USA T annual M 2071–2099 1.66 to 2.22
T annuala M 2021–2050 0.83 to 1.38
T annuala 0.83 to 1.38
T annuala M 2041–2070 1.38 to 1.94
T annuala 0.83 to 1.38
T annuala M 2070–2099 2.5 to 3.61
T annuala 0.83 to 1.38

Sun et al. (2015) USA T annualb M 2021–2050 1.11 to 1.66
T annualb M 2021–2050 1.11
T annualb M 2021–2050 1.11 to 2.22
T annualb M 2021–2050 1.66
T annualb M 2041–2070 1.11 to 1.66
T annualb M 2041–2070 1.11
T annualb M 2041–2070 1.11 to 2.22
T annualb M 2041–2070 1.11
T annualb M 2070–2099 3.33 to 3.88
T annualb M 2070–2099 2.22 to 2.77
T annualb M 2070–2099 1.66 to 2.22
T annualb M 2070–2099 1.11

Karl et al. (1996) USA T annual O 1900–1994 0.5

Williams (2010) SEUS T min winter O 1920–1998 −2.22
T min summer O 1920–1998 −1.11 to 1.11
T min spring O 1920–1998 −1.11 to 1.66
T min fall O 1920–1998 −0.55 to 1.66
T max winter O 1920–1988 −2.22 to −0.55
T max summer O 1920–1988 −0.55 to 1.11
T max spring O 1920–1988 −1.11 to 1.11
T max fall O 1920–1988 −0.55 to 1.11

Wuebbles et al. (2014) USA T min M 1996–2091 1 to 2
USA T max M 1997–2091 1
USA T min M 1998–2091 3 to 5
USA T max M 1999–2091 3 to 6

Soule (2005) SEUS T annual O 1961–1990 −0.24 to 1.39

(Continues)
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TABLE 1a (Continued)

References Region Variable Observation (O)/Models (M) Period Value (°C)

Rosenzweig et al. (2014) USA T winter M 1980–2050 1.5
T summer M 1980–2050 3

Rogers (2013) USA T annual O 1895–2007 0.5 to 1

Parkinson et al. (2015) FL T annual M 2014–2100 1 to 4

Martinez et al. (2012) FL T summer max (JJA) O 1895–2009 −0.035
FL T summer max (JJA) O 1970–2009 0.4
FL T summer min (JJA) O 1895–2009 0.018
FL T summer min (JJA) O 1970–2009 0.018 to 0.03

Pachauri et al. (2014) G T annual M 1995–2090 0.5 to 1
T annual M 1995–2090 3 to 5

IPCC (2007) G T annual O 1970–2004 −0.2 to 0.2
USA T annual M 2080–2099 1.5 to 3

Note. The change values in the last column was used to develop the bar plots in Figures 5–7. FL: Florida; SF: South Florida; G: global.
aRefers to CMIP3.
bRefers to CMIP5.
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so that the findings may be summarized and integrated to reveal

valuable information. The number of studies in meta‐analysis is often

limited to a manageable number of relevant, important, and pertinent

findings. In our meta‐analysis, studies with changes in temperature

and precipitation in Florida as well as studies with potential impacts

of these changes on various natural and man‐made ecosystems

were considered. The results of the meta‐analysis were used for the

development of scenarios and causal chains and loops.

Step 1:. The meta‐analysis for this study began with 446 publica-

tions from faculty affiliated with Florida Climate Institute

(https://floridaclimateinstitute.org/resources) published between

2000 and 2017. Studies were divided into three groups: (a) climate

change studies that focused on portions or the entire state of

Florida, (b) the entire south‐eastern United States (SEUS), and (c)

the rest of the world. Fourteen studies in Groups 1 and 2 cited

temperature and precipitation change values. The snowball sam-

pling approach (Goodman, 1961; Lynch et al., 2016) was used to

obtain additional studies. Snowball sampling refers to using the

reference list of a study (backward snowball sampling) or the

citations to the study (forward snowball sampling) to identify

additional studies. Using snowball sampling of the 14 studies,

additional 11 more studies were downloaded from databases

(e.g., web of science and google scholar). These 11 studies were

either cited or were in the reference list of the 14 studies.

Additionally, we used multiple search strings to identify more

relevant studies (e.g., “climate change” and “vulnerability to eco-

system” and Florida; “global warming” and “vulnerability to eco-

system” and Florida; “precipitation and temperature change in

Florida”) in google scholar database. Adding the study region

“Florida” in the search string was useful to bring the number of

studies to a manageable number. We found seven additional stud-

ies using this methodology. In general, for the study region, we

used studies that explicitly mentioned temperature and precipita-

tion change values and while in some cases, the information was

extracted from the figures and tables. There were 32 studies with

quantitative directional changes in temperature and precipitation

for Florida (14 from Florida Climate Institute publications; 11 from
the snowball sampling approach; and 7 from string searches in

databases). The frequency distribution plot of the studies based

on the year of publication was carried out (Figure 4).

Step 2:. The information from the 32 studies was synthesized into

two tables, one for each climate variable (temperature and precip-

itation; Tables 1a and 1b) with the help of the Anandhi and Baker

(2013) research tool. The table contains information on region

(e.g., south Florida), variable of interest (e.g., annual temperature),

whether the variable was observed or modelled (e.g., meteorolog-

ical stations, GCM), period of data (e.g., 1960–2005), and the

change value (e.g., 5% precipitation change).

Step 3:. The changes were converted to a common unit. For exam-

ple, some studies showed temperature change in degree Fahren-

heit. These changes were converted to a common degree Celsius

temperature scale.

Step 4:. Changes in observed climates from the studies were

synthesized using bar plots, scenario line plots, and funnel plots.

Individual changes observed were plotted using a bar plot. Each

bar in the bar plot and row in the table (Tables 1a and 1b) represents

a change in value for the variable (e.g., temperature and precipitation).

This plot was used to report the overall changes and ranges observed

across the 32 studies in Florida. The differences among the studies

other than changes in variables were not very obvious from the bar

plot. For example, two studies, both with a 10% precipitation change,

appear the same on the bar plot, but their differences in time periods

may not be seen. These differences can be observed from the scenario

line plot and scenario funnel plot.

The scenario line plot (referred as a scenario line) combined all of

the change values observed in the studies (Tables 1a and 1b). In this

plot, lines are drawn between years (x‐axis) and changes values of

precipitation and temperature (y‐axis; referred to as scenario lines).

Although for this study, scenario lines are used for precipitation and

temperature, the methodology is applicable to other types of variables

as well, for example, changes in drought, frost, wind, and solar radia-

tion). Each scenario line was plotted between the start and end year

of the documented change. When the change values at the start was

https://floridaclimateinstitute.org/resources


TABLE 1b Percent change in precipitation observed from meta‐analysis

References Region Variable Observation (O)/Models (M) Period Value (%)

Devitt and Tol (2012) FL P annual O 1895–2006 10

Orem et al. (2015) SF P annual M 2014–2060 ±10

Obeysekera et al. (2015) SF P annual M 2011–2060 ±10

Obeysekera et al. (2011) SF P annual M 1985–2055 ±10

Nungesser et al. (2015) P annual O 1965–2003 ±10

Koch et al. (2015) SF P annual M 2014–2060 ±10

USEPA (2016) USA P annual M 1901–2015 ±10

Karl (2009) SEUS P summer O 1901–2007 −15 to 10
SEUS P winter O 1901–2007 −5 to 20
SEUS P spring O 1901–2007 −15 to +5
SEUS P fall O 1901–2007 −10 to +30
USA P very heavy O 1958–2007 10 to 20
USA P winter M 2080–2099 −10 to 0
USA P summer M 2080–2099 −35 to 0
USA P spring M 2080–2099 −30 to −15
USA P fall M 2080–2099 5 to +15
USA P annual O 1958–2008 −15 to 5

Walther et al. (2002) P annual O 1976–2002 0 to +10

Sun et al. (2015) USA P annuala M 2021–2050 0 to 5
USA P annuala M 2021–2050 0 to 5
USA P annuala M 2021–2050 0 to 5
USA P annuala M 2021–2050 0 to 5
USA P annuala M 2041–2070 0 to 5
USA P annuala M 2041–2070 0 to 5
USA P annuala M 2041–2070 0 to 5
USA P annuala M 2041–2070 0 to 5
USA P annuala M 2070–2099 −5 to 0
USA P annuala M 2070–2099 0 to 5
USA P annuala M 2070–2099 5.0 to 10.0
USA P annuala M 2070–2099 0 to 10

IPCC (2007) USA P annual M 2080–2099 −5 to 5

Karl et al. (1996) USA P annual O 1900–1994 10

Xiao, Wang, Hagen, Medeiros, and Hall (2016) EC FL P annual M 2010–2050 −7 to 17

Wuebbles et al. (2014) USA P max daily M 1996–2091 5 to 15
USA P max daily M 1996–2091 10 to 25

Martinez et al. (2012) FL P annual O 1895–2009 −2 to +5
FL P annual O 1970–2009 −1 to +1
FL P summer (JJA) O 1895–2009 −3 to +4
FL P summer (JJA) O 1970–2009 0 to +1
FL P annual O 1895–2009 0 to +2
FL P annual O 1970–2009 0 to +1
FL P summer (JJA) O 1895–2009 −3 to +4
FL P summer (JJA) O 1970–2009 0 to +2

Pachauri et al. (2014) G P annual M 1995–2090 10
G P annual M 1995–2090 ±10

Note. The change values in the last column was used to develop the bar plots in Figures 5–7. FL: Florida, SF: South Florida; G: global.
aRefers to CMIP5.
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not provided, a zero‐change value was assumed; the change value for

the end year of change was obtained from the study. Each value (row)

in the table (Tables 1a and 1b) was used to draw one scenario line.

The number of scenario lines was based on the number of studies iden-

tified as well as the number of change values available in each study.

Scenario funnel plot (referred as funnel plots) are derived by com-

bining one or more scenario lines. Similar to scenario lines, the x‐axis

in funnel plots represented the time (e.g., years) whereas y‐axis repre-

sented the changes in precipitation and temperature. In general, there

are several ways funnel plots could be developed. A funnel plot could

be developed with a minimum of two scenario lines, or with several

scenario lines (e.g., Rows 1 to 3 in Figure 2). In other words, we need

at least two change values for a variable or two bars in a bar plot to
develop a scenario funnel. Similarly, the multiple scenario lines could

be used to form one or more scenario funnels (e.g., Rows 4 and 5 in

Figure 2). When there were multiple change values for a variable or

bar, they can be translated into one or more scenario funnels for each

variable as observed in Rows 4 and 5 in Figure 2. The number of

scenario funnels is subjective based on the distribution of the scenario

lines (Rows 1 to 3 or Rows 4 and 5 in Figure 2), level of detail required,

resources available as well as spatial and temporal scales (Rows 4 and

5 in Figure 2) of the study. Depending on the scenario lines, the funnel

plots could be symmetrical (funnels in Rows 1 to 3) or asymmetrical

(funnels in Rows 4 and 5) along x‐axis. The width of the funnel mouth

represents the differences among various predictions in the studies.

For example, the broader funnels represent larger difference among



FIGURE 2 Methodology in developing scenario funnel plots (Column 3) from bar plots (Column 1) and scenario lines (Column 2) using theoretical
change values. Row 1 is an example of symmetrical funnel plot (equal change values in both directions) and Row 2 is for asymmetrical funnel plot.
Rows 1, 2, and 4 are examples with change values having same start and end times, and Rows 3 and 5 are examples with change values having
different times. Rows 1 to 4 are examples in developing a single funnel plot whereas Row 5 is an example with multiple funnel plots (blue, brown,
and green). Funnel plot in Rows 1 to 5 are examples of funnels with increasing width, whereas funnel in Row 6 (green funnel) represents a funnel
that is increasing initially and later decreasing

ANANDHI ET AL. 7 of 17



FIGURE 3 Methodology for Components 2 and 3. The scenario funnel plots (Column 3) from Figure 2c,d,i,l,f with theoretical change values and
those in the first row in the figure are the same

FIGURE 4 Year wise distribution of publications observed in this
study. The two y‐axes are different
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various predictions, whereas the narrow funnel represent lesser

difference among predictions. The width of the funnel can change

with time. The funnel width can increase with time (funnel in Rows

1 to 4) showing that the differences among various predictions

increase with time. The funnel width can also first increase and then

decrease with time (funnel in Row 6). The different funnel plots were

illustrated using theoretical change values. These types of funnel plots

are further discussed in sections (Section 4) showing actual change

values. Multiple funnel plots were developed for Florida from 32

studies and used in the development of incremental scenarios.
3.2 | Methodology followed for Component 2:
Scenario development from meta‐analysis

In this study, incremental scenarios were derived from funnel plots

(Figure 3). In general, incremental or synthetic scenario generation

(IPCC, 1994) refers to a method of scenario development where a

climatic variable is changed incrementally by arbitrary amounts. For

example, a temperature can be changed incrementally by arbitrary

amounts of 1°C (e.g., +1, +2, +3, +4°C) change in temperature. These

arbitrary amounts need not necessarily present a physically plausible

or realistic set of changes. In this study, the incremental amounts were

based on the range of changes observed during the synthesis of

existing literature (Component 1: meta‐analysis). They are usually

adapted for exploring system sensitivity prior to the application of

more credible, model‐based scenarios (Anandhi et al., 2011). Studies

included in meta‐analysis combine change values from the GCMs as

well as observations. In a broad sense, this method can be classified

as scenarios generated from GCMs using simple manipulation of cli-

mate observations (e.g., change factors). Other methods used in the

development of future climate scenarios are (a) based on analogy

with different climatic zones or historical time periods and (b) from

more sophisticated statistical and dynamic downscaling of variables

(Anandhi, 2010; Anandhi et al., 2011). Themost commonly used scenario

type is based on outputs from the GCMs. These methods have been

applied with reference to or in conjunction with model‐based scenarios.

Scenario funnels provide a dynamic view of the future through

exploring various paths of change in variables (Mahmoud et al.,

2009; Timpe & Scheepers, 2003). This leads to a wide range of alter-

native futures. For example, a typical scenario funnel for temperature

and precipitation change is observed in Figure 5c,f. The plot provides



FIGURE 5 (a–c) Bar plot, scenario lines, and funnel plots for temperature change in °C (y‐axis). (d–f) Bar plots, scenario lines, and funnel plots for
precipitation change in percent (y‐axis), respectively. X‐axis in bar plots (a,d) were for individual studies (serial numbers) whereas in scenario lines
and funnel plots, they were years. In bar plots, blue bars represent values cited and orange bars represent a range from value cited if applicable
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insight into probable future changes in temperature rather than one

single possible future (Timpe & Scheepers, 2003). If we observe the

changes from today's standpoint gazing into the future, the range of

possible changes in temperature is large. Ranges in change values for

climate variables (spread of the funnel mouth) were arbitrarily divided

into change values in the funnels (Figure 3a). Incremental scenarios

were developed using 10% increments of change for precipitation

and 1°C increments for temperature.
FIGURE 6 Spatial distribution of individual studies using bar plots (Rows
4). Rows 1 and 3 represent temperature change, and Rows 2 and 4 represe
respectively. The columns show the changes in temperature and precipitati
States, and (d) Florida spatial scales. The x‐axis in bar plots (Rows 1 and 3
Climate scenarios developed from meta‐analysis can be

adopted for impact studies for developing synthesized scenarios from

multiple studies. The likelihood is high that they have combined

multiple scenarios and development methods. There are several

limitations that may restrict the usefulness of these studies for impact

assessment: (a) the mismatch between spatial resolution of studies

in meta‐analysis and the resolution required for impact assessments;

(b) the difficulty in distinguishing an anthropogenic signal from the
1 and 3) and distribution of the studies using funnel plots (Rows 2 and
nt precipitation change observed from meta‐analysis in Florida region,
on obtained from studies at (a) global, (b) USA, (c) south‐eastern United
) are serial numbers



FIGURE 7 Temporal distribution of temperature and precipitation change bar plots (Rows 1 and 3) and funnel plots (Rows 2 and 4) observed
from meta‐analysis for Florida region. The studies were separated temporally for four seasons (a) summer, (b) winter, (c) spring, (d) fall, and (e)
the rest (e.g., annual/diurnal/daily) for Florida. The x‐axis in bar plots (Rows 1 and 3) are serial numbers for the studies in Tables 1a and 1b
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noise generated by inherent internal model variability; and (c) the

difference in climate sensitivity for various models. In spite of

these limitations, the scenarios developed using meta‐analysis can

be widely used for developing climate scenarios for quantitative

impact assessments.
3.3 | Methodology followed for Component 3:
Causal chains and loops development

In Component 3, causal chain and loop diagrams were developed.

Causal chain is an ordered sequence of events in which any one event

in the chain causes the next. Causal loop is when an event in the chain

causes an earlier event in the chain then the loop developed is

referred to as causal loop. Describing the causal chain from driving

forces to impacts and response is a complex task and needs to be bro-

ken down into sub‐tasks (Kristensen, 2004). These diagrams explain

the cause and effect behaviour from the systems (e.g., ecosystems)

standpoint to assess the impacts of climate change on multiple ecosys-

tems. There are a number of frameworks available for the develop-

ment of causal chains. One is the Driving Forces Pressure State

Impacts Response (DPSIR) framework, in which there is a chain of

causal links (or components) starting with “driving forces” (e.g., climate,

temperature, and precipitation change) through “pressures” (e.g.,

changes in freeze and rain) to “states” (physical, chemical, and biolog-

ical states) and “impacts” on ecosystems health and functions, eventu-

ally leading to “responses” (prioritization, target setting,). The other is

the Global International Waters Assessment where the causal chain

is an assessment of the linkages between problems and their underly-

ing (root) causes (includes immediate and intermediate causes, and the
root causes that lead to the creation of the problem, Kristensen,

2004).

In this study, the DPSIR framework was used to develop the

causal chain diagram for selected ecosystems in Florida. The compo-

nents in the DPSIR network are easily described using indicators in

most ecosystems. Indicators are powerful tools used to communicate

technical data in relatively simple terms which portray the interrela-

tionships among climate and other physical and biological elements

of the environment. In this study, they are used to facilitate identifica-

tion of discernible impacts from climate change (Anandhi, Steiner, &

Bailey, 2016). Causal chain and loop diagrams were developed using

one or more studies in the meta‐analysis, incremental scenarios devel-

oped in this study, studies on altered climate impact assessments, and

author expertise on the topic. Essentially, the diagrams convert the

complexity of the ecosystem into relatively simple, easily understood

cause and effect diagram. These diagrams can be subsequently used

to develop further experiments to help understand cause and effect

in more detail.
4 | RESULTS AND DISCUSSION

The results of the meta‐analysis (Component 1 of the decision support

tool) were discussed using yearly distribution plots, bar plots, scenario

line plots, and funnel plots (Figures 5–7) and tables (Tables 1a and 1b).

Incremental scenarios (Tables 2a and 2b, Figure 3) were developed by

summarizing ranges of change values in scenario funnels. Subse-

quently, causal chain diagrams (Component 3) were used to explain

the cause and effect (Figure 8) for multiple stakeholders.



TABLE 2a Incremental scenarios developed for temperature based on scenario funnels (Figures 6 and 7)

Time period Ranges Incremental scenarios No. of studies (change value)

Spatial scale

Global 1925–2005 −0.2 to 3 −1, 0, 1, 2, 3 7
1995–2090 0 to 5 0, 1, 2, 3, 4, 5 2

USA 1895–2008 0 to 1.11 0,1,2 5
1996–2099 0 to 6 0, 1, 2, 3, 4, 5, 6 33

SEUS 1920–1990 −2.22 to 1.66 −3, −2, −1, 0, 1, 2 9

Florida 1860–2003 0 to 1.5 0, 1, 2 2
1985–2100 0 to 5.55 0, 1, 2, 3, 4, 5, 6 14

Temporal scale

Summer 1895–1998 −1.11 to 1.11 −2, −1, 0, 1, 2 2
1980–2050 0 to 3 0, 1, 2, 3 7

Winter 1920–1998 −2.22 to 0 −3, −2, −1, 0 2
1975–2050 0 to 1.5 0, 1, 2 2

Spring 1920–1988 −1.11 to 1.66 −2, −1, 0, 1, 2 2

Fall 1920–1988 −1.11 to 1.66 −2, −1, 0, 1, 2 2

Annual/diurnal 1895–2008 −0.24 to 3 0, 1, 2 7
1996–2099 0 to 6 0, 1, 2, 3, 4, 5, 6 27

Note. SEUS: south‐eastern United States.

TABLE 2b Incremental scenarios developed for precipitation based on scenario funnels (Figures 6 and 7)

Time period Ranges Incremental scenarios No. of studies (change value)

Spatial scale

Global 1995–2090 ±10% −10, 0, 10 2

USA 1900–2015 −15% to 20% −20, −10, 0, 10, 20 4
1996–2099 −35% to 25% −40, −30, −20, −10, 0, 10, 20 19

SEUS 1901–2007 −15% to 30% −20, −10, 0, 10, 20, 30 4

Florida 1895–2009 ±10% −10, 0, 10 11
2006–2060 −10% to 17% −10, 0, 10, 20 5

Temporal scale

Summer 1895–2009 −15% to 10% −20, −10, 0, 10 5
2080–2099 −35% to 0% −40, −30, −20, −10, 0 1

Winter 1901–2007 −5% to 20% −10, 0, 10, 20 1
2080–2099 −10 to 0 −10, 0 1

Spring 1901–2007 −15% to +5% −20, −10, 0, 10 1
2080–2099 −30% to 0% −30, −20, −10, 0 1

Fall 1901–2007 −10% to 30% −10, 0, 10, 20, 30 1
2080–2099 5% to 15% 0, 10, 20 1

Annual/diurnal 1895–2008 −15% to 20% −20, −10, 0, 10, 20 6
1996–2099 −10% to 25% −10, 0, 10, 20, 30 26

Note. SEUS: south‐eastern United States.
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4.1 | Meta‐analyses: Distribution plots, bar plots,
scenario line plots, and funnel plots

The yearly distributions of the 32 studies (Step 1 in Section 3.1) and

the total number of studies observed during systematic literature

search were plotted (Figure 4). Around 2005, the total number of

studies on climate change (precipitation and temperature) in Florida

increased exponentially (nearly 10‐fold). Temperature and precipita-

tion changes documented among the studies used in meta‐analysis

over Florida could be observed from bars in Figure 5a and 5d, lines in

Figure 5b and 5e. The spread of the changes can be observed from
funnel in Figure 5c and 5f. The temperature change ranged between

6°C and −3.5°C among individual studies, whereas precipitation

change ranged between −30% and 35%. From Figure 5b, it is

observed that temperature ranged between 3°C (Easterling et al.,

1997) and −4°C during the 20th century but the range was higher

up to 6°C during the 21st century. Figure 5e shows a −15% to 30%

precipitation change during 20th century but a 25% to 35% increase

during 21st century (Obeysekera et al., 2011; Orem, Newman,

Osborne, & Reddy, 2015). Most studies suggest a gradual increase

in temperature for the historical analysis, whereas future emission

scenarios predict rapid increases. Temperature and precipitation



FIGURE 8 Potential causal chain and loop diagram for (a) agroecosystems, (b) mangrove ecosystems, (c) water resources, and (d) sea turtles.
Agroecosystems is an example for man‐made systems whereas mangrove ecosystems are an example for natural systems. Sea turtles are an
example for an individual species, and water resources are representative of a natural resource. The ovals are made different sizes just to
accommodate the text
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changes observed using these scenario funnels could be subjective to

the time period and spatial scales used.
4.2 | Meta‐analysis: Spatio‐temporal variability in
temperature and precipitation changes

To observe if the changes in temperature and precipitation vary across

spatial and temporal scales, the studies from Tables 1a and 1b were

subset using two criteria. The first criteria were based on the spatial

coverage of the original study into four classes, namely, whether the

change values for Florida were obtained from (a) global studies, (b)

entire United States, (c) south‐eastern United States (SEUS), and (d)

focused over entire or parts of Florida (Figure 6). From the bar plots,

scenario lines, and funnels (Columns a to d in Figure 6), it was

observed that the changes in temperature and precipitation were

different across the classes. More information on spatio‐temporal

variability in temperature and precipitation changes in SEUS can be

obtained from Anandhi and Bentley (2018).

The precipitation change in Florida (Rows 1 and 2 in Figure 6)

ranged between ±10% in global studies for historical time period. The

change was different for Florida in the second class (entire United

States). The precipitation change ranged between ~(±20%) and ~25%

to ~(−35%) during historical and future time periods, respectively. For

the third class (SEUS), the precipitation change in Florida ranged
between 30% and −10% for the historical period. Finally, in the

fourth class (studies in entire or parts of Florida), the precipitation range

was ±10% and 20% to about −12% during historical and future

time periods. The temperature change in Florida (Rows 3 and 4 in

Figure 6) ranged between ~3°C to −4°C and 0°C to 1°C in global studies

for historical and future time periods, respectively. The change was

different for Florida in the second class (entire United States). The

temperature change ranged between 0°C to 1.38°C (Misra, Carlson,

Craig, & Enfield, 2011) and ~0°C to ~6°C during historical and future

time periods, respectively. For the third class (SEUS), the temperature

change in Florida ranged between 1.39°C (Soule, 2005) and −3.5°C

(Williams, 2010) for the historical period. Finally, in the fourth class

(studies in entire or parts of Florida), the temperature range was ~1.5°C

to −3°C and 0°C to 5.5°C during historical and future time periods.

The second criteria for classification were based on the seasonal/

annual coverage of the original study. The five classes were, namely,

four seasons (a) summer, (b) winter, (c) spring, (d) fall, and (e) the non-

seasonal (e.g., annual/diurnal/daily; Figure 7). The precipitation change

(Rows 1 and 2 in Figure 7) of −15% to 10% and 0 to −35% was

observed for summer season during historical and future time periods,

respectively. The change during winter season was ~(−15%) to 10%

and 0% to 10% during historical and future time periods, respectively.

During autumn season, the changes in precipitation were in the ranges

−15% to 5% and −30% to 0% in historical and future time periods,
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respectively. The ranges observed were −10% to 30% and 0 to 30%

during historical and future time periods, respectively, for spring season.

Higher range of precipitation change of ~(±20%) and ~(−20%) to ~30%

during historical and future time periods, respectively, was observed in

the fifth class (nonseasonal).

From Figure 7 (Rows 3 and 4), the temperature change of

~(−1.5°C) to 1.25°C and 0°C to 3.3°C during historical and future time

periods, respectively, was observed for summer season. The change

ranged from ~(−3°C) to 0°C and 0°C to ~3.5°C during historical and

future time periods, respectively, during winter season. During autumn

and spring seasons, the temperature change ranged ~(−1.5°C) to 2°C

and ~(−0.5°C) to ~0.5°C, respectively. Higher range of temperature

change of ~(±4°C) and 0 to ~6°C during historical and future time

periods, respectively, was observed in the fifth class (nonseasonal).
4.3 | Incremental scenario development

Incremental temperature and precipitation change scenarios were

developed in this study (Tables 2a and 2b, respectively), from precipi-

tation changes ranging between +30% and −40% and temperature

changes ranging from +6°C to −3°C for Florida. Incremental scenarios

were developed at 10% increments in the precipitation change range

and 1°C increments in the temperature change range. Incremental

scenarios for Florida include +30%, +20%, +10%, −10%, −20%,

−30%, −40% precipitation changes, +6°C, +5°C, +4°C, +3°C, +2°C,

+1°C, −1°C, −2°C, −3°C for temperature changes. Similarly, incremen-

tal scenarios for the two criteria of classification (discussed in previous

section), namely, spatial (e.g., global studies, studies over United

States, SEUS, and studies limited to Florida) and temporal scales (e.g.,

summer, winter, spring, fall, the rest), are listed in Tables 2a and 2b.
4.4 | Causal chains and loops for incremental
scenarios

This section briefly describes the causal chains developed in this study

using the DPSIR framework for multiple ecosystems in Florida, scenar-

ios changes, and author expertise (Figure 8). The driving forces for

every causal chain developed in this study were the temperature and

precipitation changes. Incremental precipitation changes scenarios

ranged between −40% and +30% in 10% increments whereas the

temperature change scenarios ranged between −3°C and +6°C in

1°C increments. A no‐change scenarios was not assessed. Adaptive

responses were classified into three types depending on the degree

of climate change and the level of adaptation as incremental, systems,

and transformational adaptation—which varied from a minimal change

to a more radical change in land use and management (Anandhi, 2017).

In the previous section, spatio‐temporal changes in temperature

and precipitation from 1850 to 2100 observed in the meta‐analysis

show the impacts of changes in these climate variables on Florida with

its low topography, extensive coastline, large storm events, hotspots

for biodiversity, and economic dependence on agriculture. Some

potential causal chains and loops are briefly discussed from the

perspective of (a) agricultural crops, (b) mangroves, (c) water resources,

and (d) sea turtles. These are just examples of developing causal chains

and loops on man‐made and natural ecosystems, individual species,
and natural resources. This methodology can be applied to develop

other causal chains/loops and so forth.

In the causal chains in agroecosystems (Figure 8a), the state of the

system can be represented using indicators like growing degree days

to estimate the plant's growth and development. The pressures were

represented using indicators such as plant failure temperature, frost,

spells (warm/cold/wet/dry), drought, and floods and increasing

temperature change scenarios (e.g., +6°C, +5°C, +4°C, +3°C, +2°C,

+1°C). The plant failure temperature are critical temperature thresholds

beyond which plants and plant tissue has a high potential of being

damaged, impacting both crop yield, quality as well as causing plant

failure (Anandhi & Blocksome, 2017), increases in warm spells impact

plant water use, evapotranspiration, the growing season, plant growth,

and development (Anandhi, Hutchinson, et al., 2016). Change scenarios

with decreasing temperature (e.g., −1°C, −2°C, −3°C) could increase the

number and duration of frost days. This in turn could change the timing

of the last spring freeze, first fall freeze of each year, growing season

length, increase the cold spells. The frost and cold spells in turn impact

plant phenological events in the region such as bud break in spring and

senescence and dormancy in the fall (Anandhi, Perumal, et al., 2013;

Anandhi, Zion, et al., 2013). Change scenarios with decreasing

precipitation (e.g., −10%, −20%, −30%, −40%) increase the dry spells

and drought (Anandhi, Hutchinson, et al., 2016; Anandhi & Knapp,

2016). The direct effects of drought and dry spells are reduced

cropland, increased wildfire occurrence, diminished water availability,

and increased plant failure and water demand. On the other hand,

change scenarios with increasing precipitation (e.g., +30%, +20%,

+10%) increase the wet spells and flooding (Anandhi, Hutchinson,

et al., 2016). The response to these changes could be an incremental

change in cultivation practices (e.g., changes in planting and/or harvest

dates), systems change (e.g., change in crop variety and crops grown), or

a more transformational change (e.g., a change to a different land use).

The response can alter the climate (e.g., due to changed albedo).

In Florida, mangrove communities are most extensive on the

southern tip of the peninsula, where they occur in an assortment of

geomorphologic settings (Ross et al., 2006). Mangroves control the

health and sustainability of coastal ecosystems and the future of the

Florida's recreational and commercial fisheries, recreational boating,

diving, beach‐related recreation including tourism, nature observation,

and other ecosystem‐dependent activities, collectively worth hun-

dreds of billions of dollars a year to the state's economy (Geselbracht,

Freeman, Birch, Brenner, & Gordon, 2015). Mangroves are tropical

species and well develop within an optimum temperature range

(Odum, McIvor, & Smith III, 1982). The changes in temperature (incre-

mental scenarios) may result in the temperatures in the ecosystem to

go above/below the optimum range and impact them. Pollution,

harvesting, habitat destruction, invasive species, land and resource

use, and extreme natural events are some of the stressors that, when

superimposed with the potential impacts of climate change, may lead

to more significant consequences (Scavia et al., 2002). The state of

the mangroves (Figure 8b) can be represented using its structure,

function, development, salinity rates, species diversity, and so forth.

Temperature change, food availability, or other physical factors stress

the physiology of marine animals and can be represented using

biochemical indicators of growth rate, metabolic condition, and
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physiological stress (Dahlhoff, 2004). Some potential impacts of these

temperature/precipitation scenarios over South Florida mangrove

forests state are (a) hurricanes or tropical storms in which the principal

damaging agent is wind, (b) hurricanes accompanied by a storm surge

that deposits massive volumes of marine sediment, and (c) freeze/dry

events impact seedling survival and growth rates, which in turn causes

fluctuations in freshwater–seawater exchanges. These disturbance

types differ in severity and spatial scale, and possibly in the communi-

ties, they are most likely to affect along the coastal gradient (Hawkes,

Broderick, Godfrey, & Godley, 2009). Some of the mangroves

response to impacts can be through expansion/reduction, species

extinction and/or dominance of a species, and so forth.

Water resources system's state in the causal chain/loop can be

represented using indicators such as water quantity (streamflow)/

quality or availability. Water resources in Florida are impacted by

changing temperature and precipitation (Figure 8c). For example,

evapotranspiration represents a large fraction of precipitation in most

regions of Florida and is an important for water resources

(Obeysekera, 2013). Under increasing temperature change scenarios

(e.g., +6°C, +5°C, +4°C, +3°C, +2°C, +1°C), the pressure on the ecosys-

tems increases. Water and land temperatures would increase causing

an increase in water uptake by plants and animals, changing water

availability. Increases in connective precipitation may impact extreme

events—increasing the risk of flood and drought. Additionally, there

will be increased competition for water, affecting water quality,

supply, and demand. Components of the hydrologic cycle would also

be impacted, such as increased evaporation, evapotranspiration, and

streamflow. Under increased precipitation scenarios (e.g., +30%,

+20%, +10%), Florida would experience increased wet spells and

flooding. Change scenarios with decreasing precipitation (e.g., −10%,

−20%, −30%, −40%) would see an increase in dry spells, drought,

reduced streamflow, and increased salinity. Increasing/decreasing

change scenario impacts on natural and man‐made ecosystems (e.g.,

natural species and their habitats, urban infrastructure) demonstrate

how species may respond to ecosystem changes through shifts in

species ranges, and phenology. In man‐made systems, response may

include improved urban infrastructure to manage the excess water

during flooding, managing water supply and demand as well as

changes in water and nutrient cycling (e.g., run‐off carrying fertilizers

from agricultural lands).

Climatic effects on one or a few key species may drive commu-

nity‐level change in a variety of nearshore assemblages, for example,

invertebrate responses to elevated sea surface temperatures (Harley

et al., 2006). In Florida, sustainable coastal habitats are critical drivers

of both the economy and quality of life (Geselbracht et al., 2015). The

biological importance of rising temperature varies within and among

species with unexpected differences observed in climate change

vulnerability among species (Harley et al., 2006). Sea turtles show

temperature‐dependent sex determination (Hays, Broderick, Glen, &

Godley, 2003). Egg incubation period especially during middle third

of the embryonic period are sensitive to nest temperatures, which

impact the sex of turtles. Decreasing temperature scenarios during

egg incubation period could yield males whereas increasing tempera-

ture scenarios could yield female turtles (Hays et al., 2003). Low and

high temperatures impact sea turtle (e.g., loggerheads) mortality during
all stages of its life cycle (e.g., egg, hatchlings, juvenile, and adult).

Decreasing temperature scenarios (e.g., −1°C, −2°C, −3°C) directly

could cause cold stunning and even colder temperatures could result

in coma, whereas increasing temperature scenarios (e.g., +6°C, +5°C,

+4°C, +3°C, +2°C, +1°C) potentially causes inefficient terrestrial loco-

motion, hyperthermia, and desiccation (Davenport, 1997). Coastal

ecosystems such as beaches, dunes, barrier islands, and marshes may

be able to migrate landward as sea level rises, but if development or

other impediments are in the way, these systems will be squeezed

and lose spatial extent (Geselbracht et al., 2015). The increasing tem-

perature and precipitation scenarios will impact the vegetation cover,

impacting turtle nesting and emergence of hatchlings. Recently, more

female turtles have been produced (Davenport, 1997). Increasing tem-

perature and precipitation scenarios could result in coastal squeeze.

Sea level rises due to expansion, causing the potential to compromise

the availability of nesting beaches, particularly on low‐lying narrow

coastal and island beaches, while where coastal development prevents

landward migration of beaches (Hawkes et al., 2009).

In general, feedback loops are the two‐way interaction between

climate and ecosystems that accompanies (positive feedback) or

reduces (negative feedback) the external climate forcing. Climate and

ecosystems interact mutually through both physical and biological

feedback. Physical changes involve processes that alter the atmo-

spheric temperature, water temperature, and energy through ocean–

atmosphere interaction and precipitation. Biological changes are

comprised of phenology, nutrient cycling, evapotranspiration rate,

and so forth. These physical and biological changes and processes

initiate changes in climate drivers, which sequentially results in climate

responses that amplify climate change leading to continue the loop

again as shown in Figure 8. Thus, ecosystems and transformed ecosys-

tems influence climate through different processes by altering the

energy equilibrium of the atmosphere.
5 | CONCLUSION

Environment and ecosystems are impacted by altered climate and

other stressors (e.g., urbanization). Decisions need to be made to

adjust as well as to mitigate impacts. The overall goal of the study

was to reduce the disconnect between the supply and demand for

climate information in making decisions from climate change impacts,

assessments of natural and man‐made ecosystems. Meta‐analysis of

previous studies has been used to develop a decision tool for

reviewing and synthesizing existing studies for drawing conclusions

for the future. Scenarios have been used as powerful tools to commu-

nicate how climate may and how the changes may affect vulnerability

of resources, species, and ecosystems. Causal chain and loops have

been used to understand the interactions between the environment,

ecosystems, and altered climate. These tools are often used individu-

ally. The objective of this study was to develop and demonstrate the

decision support tool that could reduce this disconnect by combining

them. The tool developed had three major components: (a) meta‐

analysis that synthesized and combined recent relevant studies to

arrive at conclusions about a body of research on temperature and

precipitation changes, (b) developed climate scenario(s) (synthetic or
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incremental) from meta‐analysis, and (c) development causal chain and

loops for selected ecosystems (Figure 1).

In meta‐analysis (Component 1 of the decision tool), revealed pre-

cipitation changes ranged between +30% and −40%, and temperature

changes ranged from +6°C and −3°C for Florida among studies. Incre-

mental scenarios (Component 2 of the decision tool) were developed

at 10% increments in the precipitation change range (+30%, +20%,

+10%, −10%, −20%, −30%, −40%) and 1°C increments in the temper-

ature change range (+6°C, +5°C, +4°C, +3°C, +2°C, +1°C, −1°C, −2°C,

−3°C) for Florida. The causal chains/loops (Component 3 of the

decision tool) were developed using Driver‐Pressure‐State‐Impact‐

Response (DPSIR) framework for selected ecosystems and resources

(e.g., agroecosystem, mangroves, water resources, and sea turtles).

The driving force for all the causal chain developed in this study were

the temperature and precipitation changes which puts pressure on the

ecosystem or environment. The state of the selected ecosystems and

resources is impacted due to pressure exerted by the changes in

temperature and pressure (incremental scenarios), and their response

to them (e.g., mitigation and adaptation strategies) was shown in the

causal chains/loops. The studies on climate impact assessments

(meta‐analysis and others) in these ecosystems as well as author

expertise on the topic was used to identify the indicators used to

represent the components of the framework (pressure, state, impact,

response) and develop the chains/loops. The indicators to represent

the components of DPSIR framework is subjective to the needs of

the stakeholders. Although the developed decision tool is demonstrated

by applying it to selected man‐made and natural ecosystems and envi-

ronments in Florida, USA, the tool can be used by multiple stakeholders

in other ecosystems and environments throughout the world.
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