

Alternate methodologies for computing evapotranspiration at a 2-kilometer resolution for Florida

John Stamm

U.S. Geological Survey

Caribbean-Florida Water Science Center

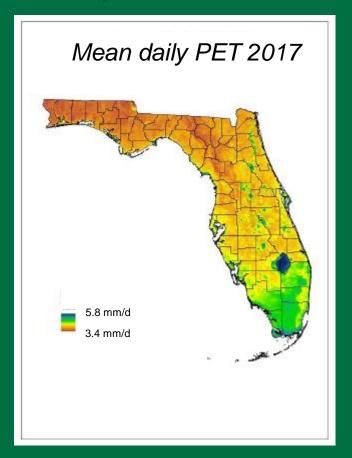
This information is preliminary and is subject to revision. It is being provided to meet the need for timely best science. The information is provided on the condition that neither the U.S. Geological Survey nor the U.S. Government shall be held liable for any damages resulting from the authorized or unauthorized use of the information

U.S. Department of the Interior

U.S. Geological Survey

Outline

- USGS gridded evapotranspiration products
- Alternate methodologies
- Bias analysis at station locations


Contributing researchers

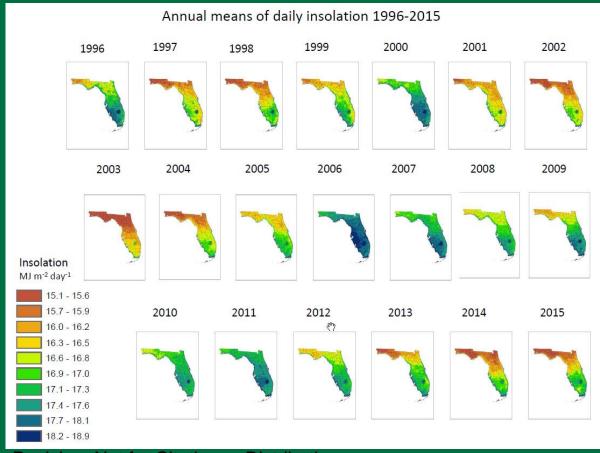
- David Sumner, USGS Caribbean-Florida Water Science Center
- Barclay Shoemaker, USGS Caribbean-Florida Water Science Center
- John Mecikalski, University of Alabama in Huntsville
- Qinglong (Gary) Wu, South Florida Water Management District

Gridded evapotranspiration products

- Potential and Reference Evapotranspiration
 - ~2-kilometer spatial resolution
 - grid is identical to NEXRAD grid
 - extent of Florida
 - includes water bodies
 - Daily time step
 - 1985-present

Gridded evapotranspiration products

- Potential evapotranspiration
 - Priestley-Taylor equation
 - f (Rs, Tmax, Tmin, RHmax, Rhmin)
 - Albedo constant value for land and for water
- Reference evapotranspiration
 - Penman-Monteith equation
 - f (Rs, Tmax, Tmin, RHmax, RHmin, Wind)
 - Albedo is constant value (grass)



Gridded evapotranspiration products, continued

Input Solar Radiation

Geostationary Operational Environmental Satellite

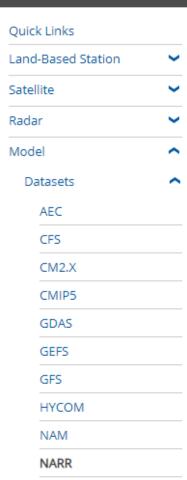
(GOES)

Gridded evapotranspiration products, continued

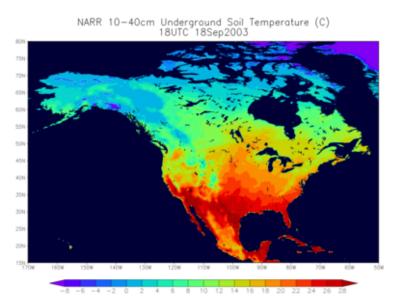
- Input Meteorological variables:
 - 1985-1995: North American Regional Reanalysis

North American Regional Reanalysis

- NOAA model used in support of weather forecasting
- 32 km spatial resolution
 - Interpolated using Radial Basis Function (RBF)
- 3 hour time step
 - Min and max of atmospheric variables based on 8 daily values



Formerly the National Climatic Data Center (NCDC)... more about NCEI »


Home Climate Information Data Access Customer Support Contact About Search

Home > Data Access > Model > Datasets > North American Regional Reanalysis (NARR)

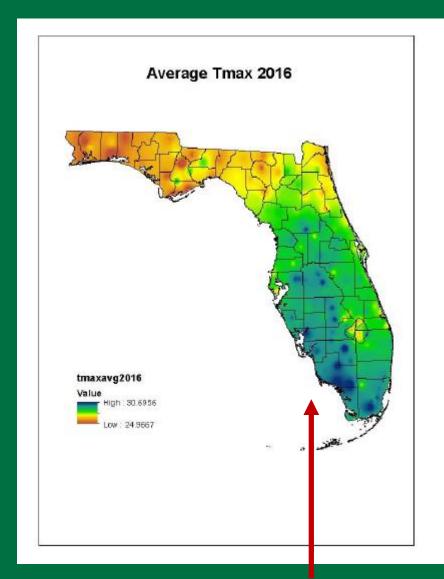
North American Regional Reanalysis (NARR)

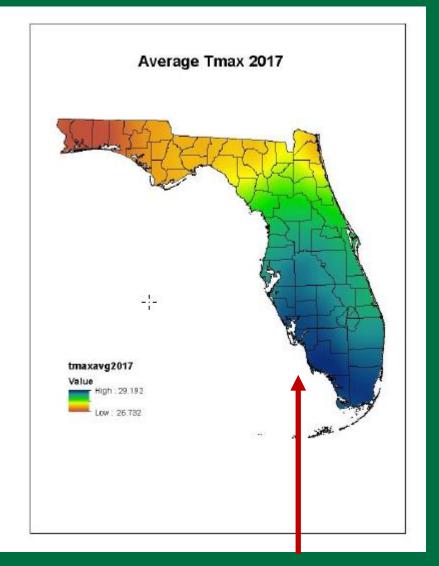
The North American Regional Reanalysis (NARR) is a regional reanalysis of North America containing temperatures, winds, moisture, soil data, and dozens of other parameters. Produced by the National Centers for Environmental Prediction (NCEP), the NARR model takes in, or assimilates, a great amount of observational data to produce a long-term picture of weather over North America. The data that are assimilated in order to initialize the model to real-world conditions are temperatures, winds, and moisture from radiosondes as well as pressure data from surface observations. Also included in this dataset are dropsondes, pibals, aircraft temperatures and winds, satellite radiance (a measure of heat) from

A sub-region plot of NARR underground soil temperature (a layer from 10 cm to 40 cm below ground) at 18 UTC on September 18, 2003. This image was produced by downloading one file of NARR data through NOMADS and visualizing with the Grid Analysis and Display System (GrADS).

polar (orbiting Earth) satellites, and cloud drift winds from geostationary (fixed at one location viewing Earth) satellites.

Gridded evapotranspiration products, continued


- Input Meteorological variables:
 - 1985-1995: North American Regional Reanalysis



Gridded evapotranspiration products, continued

- Input Meteorological variables:
 - 1985-1995: North American Regional Reanalysis
 - 1996-2017: interpolated from weather station data
 - FAWN, DBHYDRO, NOAA weather station data
 - 1996-2016: Inverse-Distance Weighted (IDW) interpolation
 - 2017: RBF interpolation

IDW

http://fl.water.usgs.gov/et/

Evapotranspiration Information and Data

The U.S. Geological Survey Florida Evapotranspiration Network is a network of 15 data collection sites representing various land cover types, which provide long-term, accurate, and unbiased information that meets the needs of many diverse users. The USGS collects the evapotranspiration data needed by Federal, State, and local agencies for planning and operating water-resources projects and regulatory programs.

The links below allow you to find information and data about Florida's evapotranspiration resources.

Evapotranspiration Data

Data Collection Sites

The map shows current and past evapotranspiration data collection sites in Florida; click the map to go to a full size version with links to NWISWeb data.

Statewide Evapotranspiration Data - (2km Daily)

ET Data County and State 1985-2016

- 1985 1986 1987 1988 1989
- 1991 1992 1993 1994
- 1996 1997 1998 1999
- 2001 2002 2003 2004
- 2006 2007 2008 2009
- 2011 2012 2013 2014
- 2015 2016

Information Resources

Evapotranspiration Publications

- USGS Evapotranspiration Publications for Florida
- Technical Report: Satellite-based Evapotranspiration Estimates Over Florida
- · InTechWeb Report: Use of Visible Geostationary Operational Meteorological Satellite Imagery in Mapping Reference and Potential Evapotranspiration over Florida

Other USGS Evapotranspiration Resources

USGS Nevada Water Science Center - Evapotranspiration Studies

Need More Information?

Contact the Florida <u>Evapotranspiration Specialists</u>

Statewide Evapotranspiration Data - (2km Daily)

File	Size	File	Size	File	Size	File	Size
Alachua 2016	6,412,654	Flagler 2016	3,095,175	<u>Lake 2016</u>	7,680,098	Pinellas 2016	1,699,415
Baker 2016	4,067,558	Franklin 2016	3,453,638	Lee 2016	5,296,903	Polk 2016	13,176,262
Bay 2016	4,884,410	Gadsden 2016	3,250,057	Leon 2016	4,781,970	Putnam 2016	5,581,810
Bradford 2016	1,904,923	Gilchrist 2016	2,119,279	Levy 2016	7,213,457	SantaRosa 2016	6,660,772
Brevard 2016	6,739,281	Glades 2016	6,585,205	Liberty 2016	5,782,353	Sarasota 2016	3,744,114
Broward 2016	8,119,784	Gulf 2016	3,811,593	Madison 2016	4,652,583	Seminole 2016	2,138,572
Calhoun 2016	3,745,912	Hamilton 2016	3,159,156	Manatee 2016	5,137,157	StJohns 2016	4,269,590
Charlotte 2016	4,579,016	Hardee 2016	4,290,226	Marion 2016	10,940,972	StLucie 2016	4,045,293
Citrus 2016	4,072,675	Hendry 2016	8,068,759	Martin 2016	4,522,732	Sumter 2016	3,996,311
Clay 2016	4,220,191	Hernando 2016	2,960,137	Monroe 2016	6,500,986	Suwannee 2016	4,737,152
Collier 2016	13,295,931	Highlands 2016	7,724,319	Nassau 2016	4,278,366	Taylor 2016	6,872,260
Columbia 2016	5,041,943	Hillsborough 2016	7,028,943	Okaloosa 2016	6,237,374	<u>Union 2016</u>	1,512,231
Dade 2016	13,269,070	Holmes 2016	3,039,802	Okeechobee 2016	6,017,924	Volusia 2016	8,200,274
DeSoto 2016	4,243,340	IndianRiver 2016	3,094,198	Orange 2016	6,607,163	Wakulla 2016	4,093,822
Dixie 2016	4,600,821	Jackson 2016	6,180,173	Osceola 2016	10,313,256	Walton 2016	6,811,257
<u>Duval 2016</u>	5,627,581	Jefferson 2016	4,040,008	PalmBeach 2016	14,322,146	Washington 2016	4,097,488
Escambia 2016	4,435,212	Lafayette 2016	3,283,216	Pasco 2016	5,006,794	Florida 2016	376,950,271

The above files are compressed, tab-delimited tables of numeric data that are generally software independent. Tab-delimited data can be imported into a variety of GIS, database or spreadsheet software packages.

Each compressed County archive file contains one data file having tab delimited columns of data, which include the following fields:

Column Definition

- Date of data representation (Year Month Day as yyyymmdd)
- 2 Latitude of Pixel value (Decimal degrees)
- 3 Longitude of Pixel value (Decimal degrees)
- 4 Pixel ID number
- 5 Potential ET(mm/day)
- 6 Reference ET(mm/day)
- 7 Solar Radiation Daily Insolation (MegaJoules/sq meter/day)
- 8 Maximum Relative Humidity for day (%)
- 9 Minimum Relative Humidity for day (%)
- 10 Maximum Temperature for day (C)
- 11 Minimum Temperature for day (C)
- 12 Wind Speed (meters/second)

Notes concerning the current data sets:

Missing values are represented by the number -9999.900.

Daily data quality codes for January 1 through December 31

Daily Quality Codes	Size	
Quality Codes 2016	905	

Each compressed Daily Quality Code file contains one data file having tab delimited columns of data, which include the following fields:

Column	Definition

- 1 Date (Year Month Day as yyyymmdd))
- 2 Quality Code (A value of 1, 2, 3, or 4)

Based on the quality of Solar data for that day

(1 = Good quality, 2 = Usable data, 3 = Uncertain or unverifiable quality, 4 = Unusable or missing)

Information regarding the methodology used in the ET computations are detailed in the InTechWeb Report:

Use of Visible Geostationary Operational Meteorological Satellite Imagery in Mapping Reference and Potential Evapotranspiration over Florida

≈0505

Metadata file describing this year's GOES ET process (XML format): GOES ET metadata 2016

Preliminary Information-Subject to Revision. Not for Citation or Distribution.

Statewide Evapotranspiration Data - (2km Daily)

Statewide Evapotranspiration Data - (2km Daily)

File	Size	File	Size	File	Size	File	Size
Alachua 2016	6,412,654	Flagler 2016	3,095,175	<u>Lake 2016</u>	7,680,098	Pinellas 2016	1,699,415
Baker 2016	4,067,558	Franklin 2016	3,453,638	Lee 2016	5,296,903	Polk 2016	13,176,262
Bay 2016	4,884,410	Gadsden 2016	3,250,057	Leon 2016	4,781,970	Putnam 2016	5,581,810
Bradford 2016	1,904,923	Gilchrist 2016	2,119,279	Levy 2016	7,213,457	SantaRosa 2016	6,660,772
Brevard 2016	6,739,281	Glades 2016	6,585,205	Liberty 2016	5,782,353	Sarasota 2016	3,744,114
Broward 2016	8,119,784	Gulf 2016	3,811,593	Madison 2016	4,652,583	Seminole 2016	2,138,572
Calhoun 2016	3,745,912	Hamilton 2016	3,159,156	Manatee 2016	5,137,157	StJohns 2016	4,269,590
Charlotte 2016	4,579,016	Hardee 2016	4,290,226	Marion 2016	10,940,972	StLucie 2016	4,045,293
Citrus 2016	4,072,675	Hendry 2016	8,068,759	Martin 2016	4,522,732	Sumter 2016	3,996,311
Clay 2016	4,220,191	Hernando 2016	2,960,137	Monroe 2016	6,500,986	Suwannee 2016	4,737,152
Collier 2016	13,295,931	Highlands 2016	7,724,319	Nassau 2016	4,278,366	Taylor 2016	6,872,260
Columbia 2016	5,041,943	Hillsborough 2016	7,028,943	Okaloosa 2016	6,237,374	<u>Union 2016</u>	1,512,231
Dade 2016	13,269,070	Holmes 2016	3,039,802	Okeechobee 2016	6,017,924	Volusia 2016	8,200,274
DeSoto 2016	4,243,340	IndianRiver 2016	3,094,198	Orange 2016	6,607,163	Wakulla 2016	4,093,822
<u>Dixie 2016</u>	4,600,821	Jackson 2016	6,180,173	Osceola 2016	10,313,256	Walton 2016	6,811,257
<u>Duval 2016</u>	5,627,581	Jefferson 2016	4,040,008	PalmBeach 2016	14,322,146	Washington 2016	4,097,488
Escambia 2016	4,435,212	Lafayette 2016	3,283,216	Pasco 2016	5,006,794	Florida 2016	376,950,271

12 wind Speed (meters/second)

Notes concerning the current data sets:

Missing values are represented by the number -9999.900.

Daily data quality codes for January 1 through December 31

Daily Quality Codes	Size
Quality Codes 2016	905

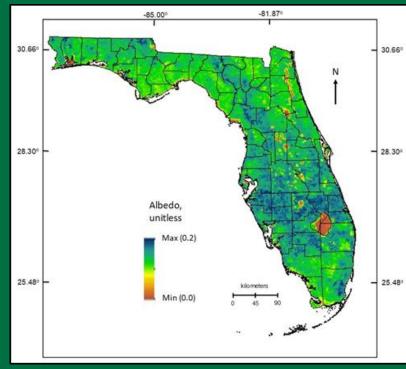
Each compressed Daily Quality Code file contains one data file having tab delimited columns of data, which include the following fields:

Column Definition

- 1 Date (Year Month Day as yyyymmdd))
- 2 Quality Code (A value of 1, 2, 3, or 4)
- Based on the quality of Solar data for that day

(1 = Good quality, 2 = Usable data, 3 = Uncertain or unverifiable quality, 4 = Unusable or missing)

Information regarding the methodology used in the ET computations are detailed in the InTechWeb Report:
Use of Visible Geostationary Operational Meteorological Satellite Imagery in Mapping Reference and Potential Evapotranspiration over Florida


Metadata file describing this year's GOES ET process (XML format): GOES ET metadata 2016

Preliminary Information-Subject to Revision. Not for Citation or Distribution.

Alternative methodologies

- "Blue sky" albedo from Moderate Resolution Imaging Spectroradiometer (MODIS) on the NASA Terra satellite
 - 5 year averages of daily values
 - <u>2011-15</u>
 - Product unavailable in 2017
- PET calculations

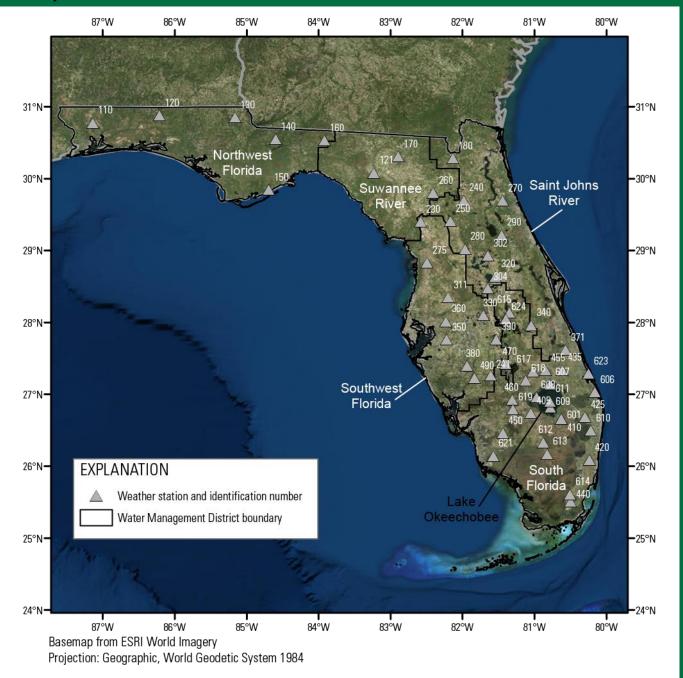
Alternative methodologies, continued

- Meteorological data from:
 - 1. FAWN, DBHYDRO and NOAA weather station data
 - 2. North American Regional Reanalysis
 - 3. Weather Research and Forecasting Model

Weather Research and Forecasting Model

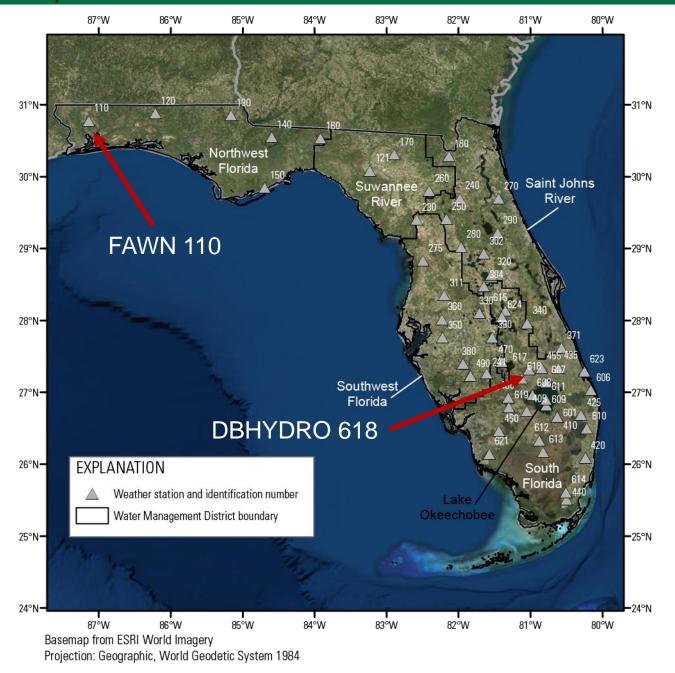
- 2 km spatial resolution
 - Grid aligns with PET, RET, NEXRAD grids
- 1 hour temporal resolution

Preliminary Information-Subject to Revision. Not for Citation or Distribution.



Bias analysis at weather station locations

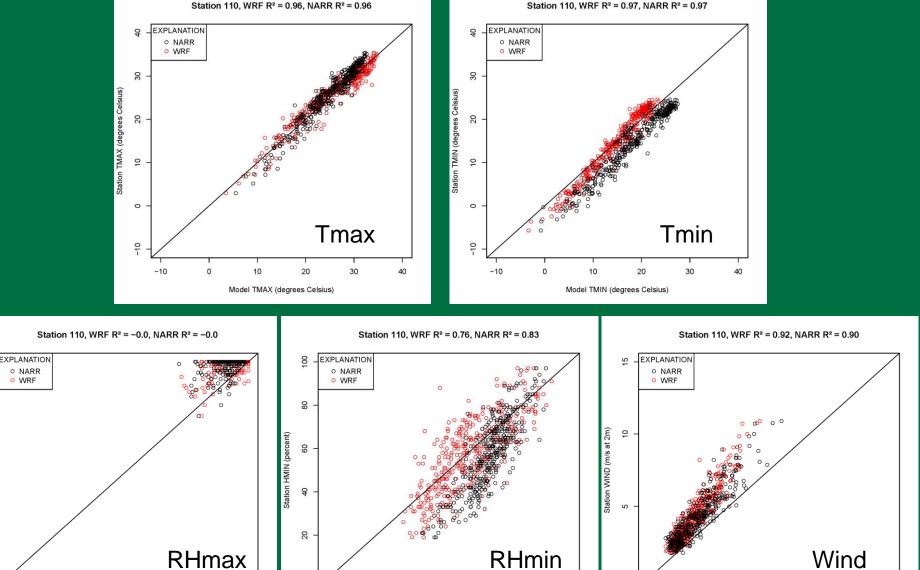
- Bias in NARR and WRF data as alternative sources of meteorological data
 - Calendar year 2017
 - 57 weather stations
 - contained sufficient data to compute RET
 - wind was limiting variable that excluded stations



Preliminary Information-Subject to Revision. Not for Citation or Distribution.

Preliminary Information-Subject to Revision. Not for Citation or Distribution.

Cross plots for FAWN 110: model (NARR and WRF) on x-axis, observed on y-axis


O NARR

20

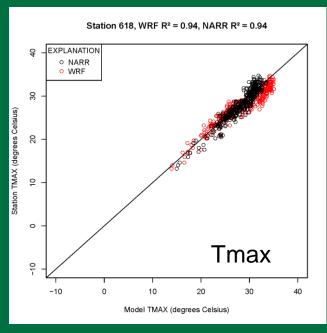
Model HMAX (percent)

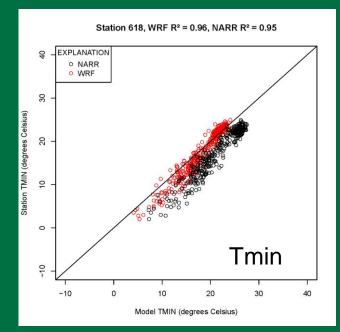
100

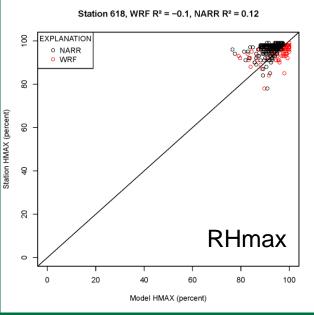
WRF

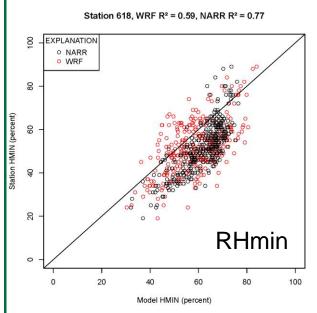
Preliminary Information-Subject to Revision. Not for Citation or Distribution.

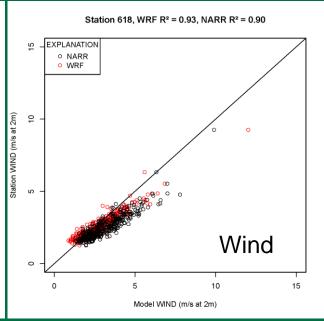
Model HMIN (percent)

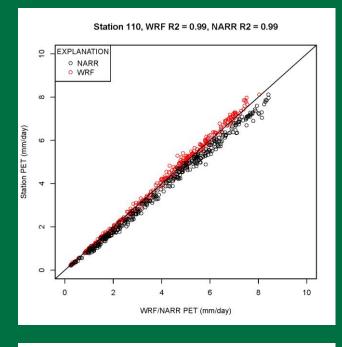

100

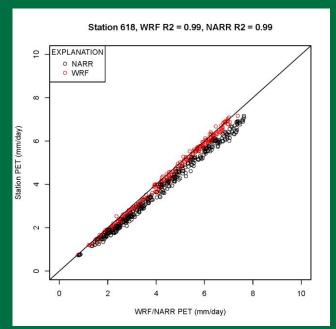

10

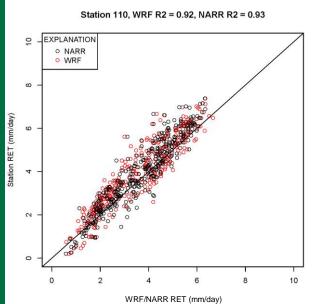

Model WIND (m/s at 2m)

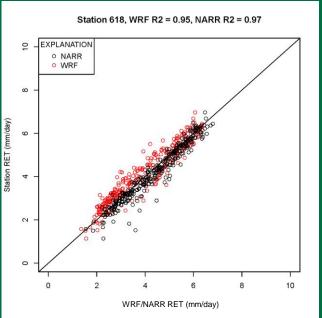

20


Cross plots for DBHYDRO 618









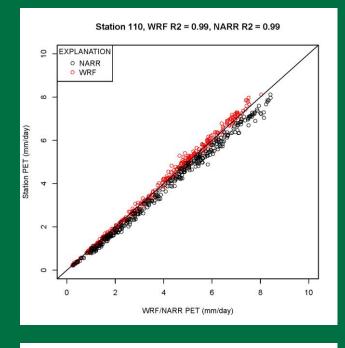
Preliminary Information-Subject to Revision. Not for Citation or Distribution.

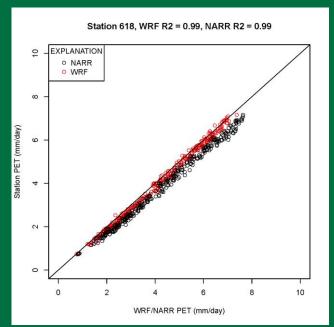
RET

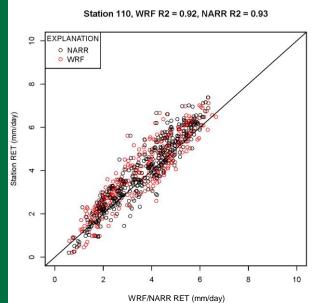
PET

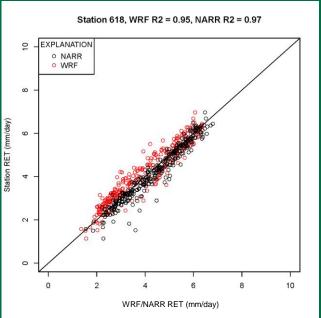
Preliminary Information-Subject to Revision. Not for Citation or Distribution.

Bias in NARR ET at station locations

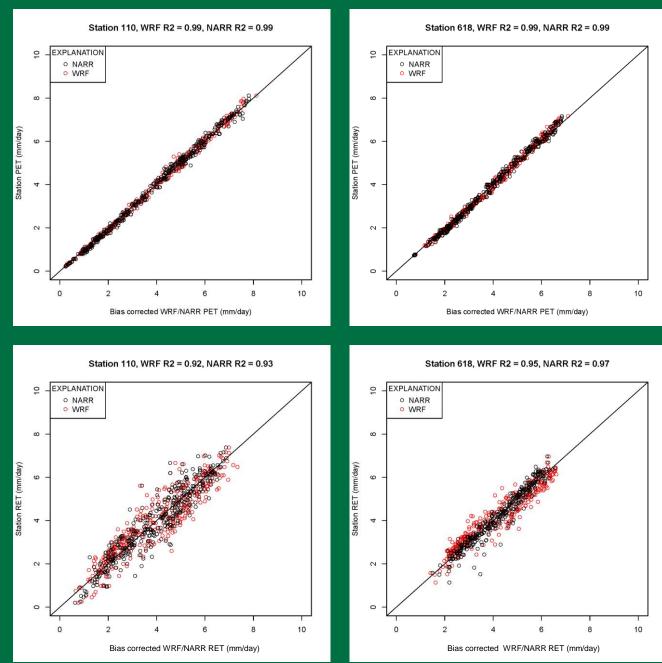

	Evapotranspira	ation based on	NARR evano	NARR evapotranspiration		as	After bias correction		
Time Period	weather statio	n observations	Tivilit e tapo						
(2017)	Potential	Reference	Potential	Reference	Potential	Reference	Potential	Reference	
	(millin	neters)	(millin	neters)	(millin	neters)	(millin	neters)	
Annual	1547	1568	1661	1535	114	-33	-2	-1	
January	56	87	64	84	8	-3	1	-4	
February	77	98	86	92	9	-6	1	-5	
March	118	139	130	130	12	-9	2	-6	
April	155	165	166	155	11	-9	1	-5	
May	192	190	206	180	13	-10	1	-3	
June	171	144	180	145	9	1	-2	5	
July	195	164	206	165	10	1	-2	6	
August	191	161	201	164	10	3	-2	8	
September	156	139	162	138	7	-1	-4	3	
October	113	119	120	121	7	2	-2	4	
November	72	88	81	88	8	1	1	1	
December	51	74	60	71	8	-2	1	-4	




Bias in WRF ET at station locations


Time Period	Evapotranspiration based on weather station observations		WRF evapotranspiration		Ві	as	After bias correction	
(2017)	Potential	Reference	Potential	Reference	Potential	Reference	Potential	Reference
	(millimeters)		(millimeters)		(millimeters)		(millimeters)	
Annual	1547	1568	1552	1434	5	-133	-2	-1
January	56	87	59	71	3	-16	1	-4
February	77	98	80	80	3	-18	2	-7
March	118	139	121	116	3	-24	3	-12
April	155	165	158	142	3	-23	3	-13
May	192	190	193	170	1	-20	2	-9
June	171	144	170	146	-1	2	-1	12
July	195	164	192	164	-3	0	-2	11
August	191	161	188	160	-3	-1	-2	10
September	156	139	151	134	-5	-5	-5	6
October	113	119	112	111	-1	-8	-2	3
November	72	88	74	76	1	-11	-1	0
December	51	74	53	64	2	-10	0	2

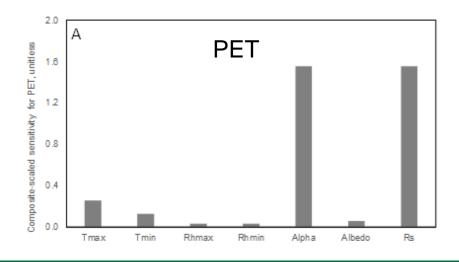
RET

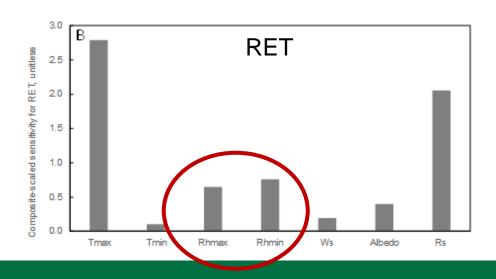

PET

Preliminary Information-Subject to Revision. Not for Citation or Distribution.

Cross plots for bias corrected PET and RET

PET

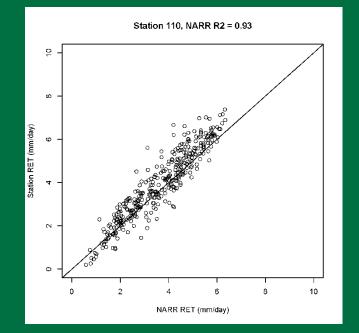

RET



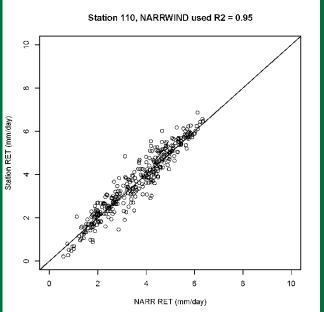
Preliminary Information-Subject to Revision. Not for Citation or Distribution.

Sensitivity of PET and RET to input meteorological variables

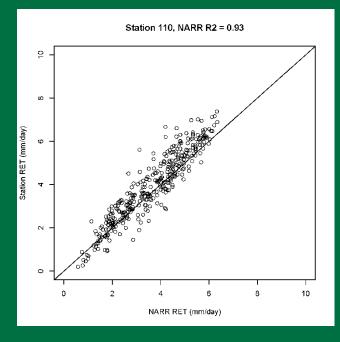
- Based on methodology of Hill (1998)
- Dimensionless index

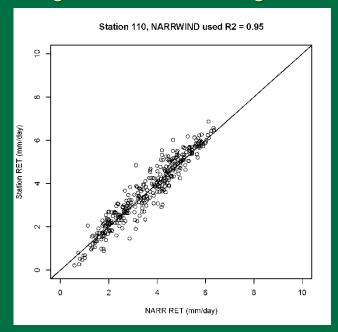


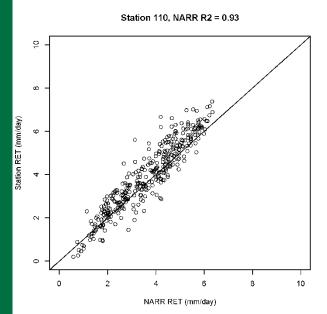
Preliminary Information-Subject to Revision. Not for Citation or Distribution.


Hill, M.C., 1998, Methods and guidelines for effective model calibration: U.S. Geological Survey Water-Resources Investigations Report 98-4005, 90 p.

Cross plots for PET and RET for FAWN 110 using NARR meteorological data

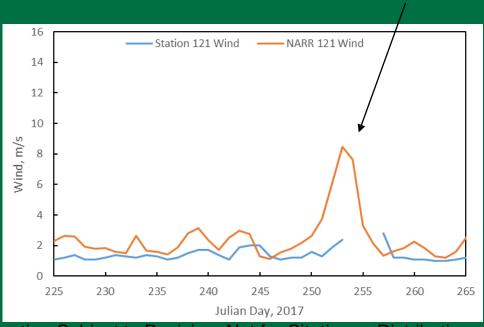

Effect


of Wind


Cross plots for PET and RET for FAWN 110 using NARR meteorological data

Effect of Wind

Effect of RHmin



Preliminary Information-Subject to Revision. Not for Citation or Distribution.

Conclusions

- MODIS data improves spatial representation of albedo
- Radial basis functions improves spatial interpolation
- NARR and WRF output are an alternative to weather station data for computing PET
 - can be used to fill missing data

No data at station during Hurricane Irma

Preliminary Information-Subject to Revision. Not for Citation or Distribution.

Conclusions

- Bias in NARR removed by linear model
 - Linear bias correction does not fully remove WRF bias
- Remaining bias primarily due to variability in minimum relative humidity
 - Random scatter, so might be difficult to correct
 - How accurate are RH sensors?
 - How accurate is RH of weather models?
 - Is variability due to sub-grid scale variability?

Preliminary Information-Subject to Revision. Not for Citation or Distribution.

