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Modern sea level rise

Sea level rise rates observed over the last century are very likely
unprecedented over any of the previous 27 centuries.
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Spatial/temporal variability
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Relative SLR projections for the coast
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Figure 13. Total RSL change at 1-degree resolution for 2100 (in meters) relative to the corresponding (median-value) GMSL
rise amount for that scenario. To determine the total RSL change, add the GMSL scenario amount to the value shown.



Relative SLR projections for the coast
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Past/future nuisance flooding

a. New York City: Based upon Observed Water Levels
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Other sea level components matter

Crest of
dune/structure

TINTR - Non-tidal residual MSL  Mean sea level DSWL  Dynamic still water level
N Astronomical tide SWL  Still water level R Wave run-up
T Wave set-up S Swash TWL Total water level

Moritz et al. (2016)



Tidal changes vs nuisance flooding

Nuisance Flooding Difference, High + SA + SSA
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Temporal variability — storm surge
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US extreme sea level indicator

Relative contribution (%)
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SLR vs waves

Sea level rise relaxes the breaking criterion, resulting in larger waves
approaching the shore.
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Storm surge flooding

Low (0.3 m) Scenario Intermediate-Low (0.5 m) Scenario

Decade when the 5-year event becomes the 0.2-year event
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NOAA (2017)



Storm surge flooding

For robust statistical analysis and we need long surge records, can
statistical models/machine learning help?
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Correlation of modelled vs observed daily max. surge

Tadesse, M., Wahl, T., Cid, A. (under revision). Data-driven modeling of global storm surges,
Frontiers in Marine Science.



Compound flooding

1) Storm surge causes flooding, rainfall on top increases the impacts




Compound flooding

1) Storm surge causes flooding, moderate rainfall on top increases the impacts
2) Moderate storm surge blocks drainage, heavy rainfall causes flooding




Compound flooding

1) Storm surge causes flooding, moderate rainfall on top increases the impacts
2) Moderate storm surge blocks drainage, heavy rainfall causes flooding
3) In estuaries/deltas storm surge interacts with river discharge

Wabhl, T., Jain, S., Bender, J., Meyers, S., Luther, M. (2015). Increasing risk of compound
flooding from storm surge and rainfall for major US cities, Nature Climate Change,
doi:10.1038/nclimate2736.



Odds are getting worse




Sea level

orojections High emission scenario
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Managing sea level rise impacts

Option 1: No active intervention
* no planned investment in defending against flooding or erosion

* cost benefit analysis doesn’t justify the expense of building or maintaining
defenses (i.e. farm land or for a few houses) on a natural coast with little
development

* shoreline will continue to evolve naturally

e can also apply to areas that are currently defended but may not be defended in
the future (may include an increased risk of flooding or coastal erosion)

Source: Nicholls (2010) Book on
“Understanding Sea-Level Rise and
Variability”




Managing sea level rise impacts

Option 2: Hold the line

* build or maintain artificial defenses so that the position of the shoreline
remains

 example is the Thames Barrier and associated defenses in London

* this approach is taken for all major coastal cities and settlements

Source: Nicholls (2010) Book on
“Understanding Sea-Level Rise and
Variability”

Thames Barrier Maeslantkering
London Netherlands



Managing sea level rise impacts

Option 3: Managed realignment

allowing the shoreline to move naturally, but managing the process to
direct it in certain areas

 donein low-lying areas (occasionally applied to cliffs)

usually done where a cost benefit analysis doesn’t justify the expense of
building or maintaining defenses or near to areas of flood rise

e also known as ‘managed retreat’ or ‘planned retreat’.

.t

(Planned) Retreat

Source: Nicholls (2010) Book on
“Understanding Sea-Level Rise and
Variability”




Managing sea level rise impacts

Option 4: Advance the line
* new defences are built on the seaward side
 done where there is a shortage of land (i.e. Maldives, Singapore)

e extensively done in Dubai

Source: Nicholls (2010) Book on
“Understanding Sea-Level Rise and
Variability”

Hulhumalé - Maldives



Managing sea level rise impacts

Another option is to ‘accommodate’. This can be done by raising
houses or building floating houses.

Un[l

Accommodate




Adaptation Pathways Map
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Costs and benefits of pathways
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Questions?



