

UNIVERSITY OF CENTRAL FLORIDA

SEA LEVEL RISE, COASTAL IMPACTS, AND ADAPTATION

Thomas Wahl Civil, Environmental and Construction Engineering & UCF Coastal

Modern sea level rise

Sea level rise rates observed over the last century are very likely unprecedented over any of the previous 27 centuries.

Spatial/temporal variability

Relative SLR projections for the coast

Figure 13. Total RSL change at 1-degree resolution for 2100 (in meters) relative to the corresponding (median-value) GMSL rise amount for that scenario. To determine the total RSL change, add the GMSL scenario amount to the value shown.

NOAA (2017)

Relative SLR projections for the coast

NOAA (2017)

Past/future nuisance flooding

Other sea level components matter

 $\begin{array}{ll} \eta_{\rm NTR} & {\rm Non-tidal\ residual} \\ \eta_{\rm A} & {\rm Astronomical\ tide} \\ \overline{\eta} & {\rm Wave\ set-up} \end{array}$

MSL Mean sea level SWL Still water level S Swash DSWL Dynamic still water level *R* Wave run-up TWL Total water level

Tidal changes vs nuisance flooding

Temporal variability – storm surge

Wahl, T., Chambers, D.P. (2015). Evidence for multi-decadal variability in US extreme sea level records, *Journal of Geophysical Research Oceans*, 120, 1527–1544.

US extreme sea level indicator

Rashid, M.M., **Wahl, T.**, Chambers, D.P., Calafat, F.M., Sweet, W.V. (2019). An extreme sea level indicator for the contiguous United States coastline, *Nature Scientific Data*, 6, 326, doi:10.1038/s41597-019-0333-x.

SLR vs waves

Sea level rise relaxes the breaking criterion, resulting in larger waves approaching the shore.

Arns et al., 2017

Storm surge flooding

Decade when the 5-year event becomes the 0.2-year event

2020 2030 2040 2050 2060 2070 2080 2090 2100 <2200

NOAA (2017)

Storm surge flooding

0

For robust statistical analysis and we need long surge records, can statistical models/machine learning help?

Correlation of modelled vs observed daily max. surge

Tadesse, M., **Wahl, T.**, Cid, A. (under revision). Data-driven modeling of global storm surges, *Frontiers in Marine Science*.

Compound flooding

1) Storm surge causes flooding, rainfall on top increases the impacts

Compound flooding

- 1) Storm surge causes flooding, moderate rainfall on top increases the impacts
- 2) Moderate storm surge blocks drainage, heavy rainfall causes flooding

Compound flooding

- 1) Storm surge causes flooding, moderate rainfall on top increases the impacts
- 2) Moderate storm surge blocks drainage, heavy rainfall causes flooding
- 3) In estuaries/deltas storm surge interacts with river discharge

Wahl, T., Jain, S., Bender, J., Meyers, S., Luther, M. (2015). Increasing risk of compound flooding from storm surge and rainfall for major US cities, *Nature Climate Change,* doi:10.1038/nclimate2736.

Odds are getting worse

@ivanhaigh

Sea level projections from Goodwin et al. (2018), Earth's Future, 6(3), 601-615

Option 1: No active intervention

- no planned investment in defending against flooding or erosion
- cost benefit analysis doesn't justify the expense of building or maintaining defenses (i.e. farm land or for a few houses) on a natural coast with little development
- shoreline will continue to evolve naturally
- can also apply to areas that are currently defended but may not be defended in the future (may include an increased risk of flooding or coastal erosion)

Option 2: Hold the line

- build or maintain artificial defenses so that the position of the shoreline remains
- example is the Thames Barrier and associated defenses in London
- this approach is taken for all major coastal cities and settlements

Source: Nicholls (2010) Book on "Understanding Sea-Level Rise and Variability"

Thames Barrier London Maeslantkering Netherlands

Option 3: Managed realignment

- allowing the shoreline to move naturally, but managing the process to direct it in certain areas
- done in low-lying areas (occasionally applied to cliffs)
- usually done where a cost benefit analysis doesn't justify the expense of building or maintaining defenses or near to areas of flood rise
- also known as 'managed retreat' or 'planned retreat'.

Option 4: Advance the line

- new defences are built on the seaward side
- done where there is a shortage of land (i.e. Maldives, Singapore)
- extensively done in Dubai

Hulhumalé - Maldives

Another option is to 'accommodate'. This can be done by raising houses or building floating houses.

Adaptation Pathways Map

Transfer station to new policy action

- Adaptation Tipping Point of a policy action (Terminal)
- Policy action effective
- Δ Decision node

Costs and benefits of pathways

Pathways that are not necessary in low-end scenario

Questions?