Machine Learning Applied to Sewer Overflows and Sea Level Rise

(Compound Flooding – extreme weather)

Steven D. Meyers¹, Shawn M. Landry², Mark E. Luther¹

¹College of Marine Science, University of South Florida ²School of Geosciences, University of South Florida

In partnership with: Marcus Beck, Maya Burke, Ed Sherwood (*TBEP*)

John Palenchar, Lisa Rhea, Edwin Guasp Santos, Carlos Frey (*city of St. Petersburg*)

Florida Water & Climate Alliance Webinar, September 20, 2021

<u>Outline</u>

- 1. Pinellas County
- 2. Changing climate
- 3. Logistic Regression
- 4. Future SLR
- 5. Past SLR
- 6. Conclusions

Pinellas County low-lying shoreline

surge can block runoff

Infrastructure failure

LIDAR

Florida International University Int'l Hurricane Research Center

http://www.ihrc.fiu.edu/research/ projects/storm-surge-broward/ How will climate change impact SSO?

Statistical model: logistic regression

Compound flooding + saturated soil -> SSO

- 1. Water Level Tide Gauge
- 2. Precipitation NEXRAD
- 3. Static infrastructure

Pinellas County (southern) 2000-2017

5 WWTP had ~900 SSO days total 200,000,000+ g surface and deep-well

Median: 200 g 176 released >1000 g 62 released > 10,000 g

6 <u>non-mechanical</u> identified w/CF: 51% of total discharge Self-selects precip > 5 σ above mean

Logistic Regression Model (Binary Classifier)

Probability π of an event is given by:

$$\ln\left(\frac{\pi}{1-\pi}\right) = \sum_i \beta_i X_i + c_0$$

 β : fitting coefficients X: independent variables c_0 : constant

Guided choice of Predictors

Previously used in flooding and precip-only SSO, not CF

LRM Yields Probability of Overflow

Events match high model probability...threshold?

Increased Probability with SLR # days/yr above probability threshold

$$W_2 \rightarrow W_2 + \xi$$

 ξ = 0 to 0.5 m

Doubles every 0.09-0.1 m

One sequence (historical).

Monte Carlo

Based on empirical probability distributions

 ξ = 0 to 0.5 m 200 yrs each

Question:

Has sea level rise already had an impact on the rate of SSOs in Pinellas County?

Remove SLR and reapply LRM

 $W_2 \rightarrow W_2 - (\alpha t - \gamma)$ α : rate of SLR (2.7 mm/yr) $\gamma = -\alpha T$: SLR prior to study

Prior SLR:

 $W_2 \rightarrow W_2 - (\alpha t - \gamma)$ α : rate of SLR (2.7 mm/yr) $\gamma = -\alpha T$: SLR prior to study

<u>Conclusions</u>

- LRMs can be developed to model infrastructure failure due to CF
- Doubling every ~0.1 m of rise
- Rare -> common
- SSOs already triggered by SLR
- Tie to NOAA weather & climate forecasts

Interactive modules: http://shiny.tbeptech.org/sso-dash/ https://shiny.tbep.org/sso-dash/future-risk.Rmd

Acknowledgement

Tampa Bay Environmental Restoration Fund

